【题目】长方形
为平面直角坐标系的原点,
点
在第三象限.
(1)如图1,若过点
的直线
与长方形
的边交于点
且将长方形
的面积分为
两部分,求点
的坐标;
![]()
(2)如图2,
为
轴负半轴上一点,且
是
轴正半轴上一动点,
的平分线
交
的延长线于点
在点
运动的过程中,
的值是否变化?若不变求出其值;若变化,请说明理由.
![]()
参考答案:
【答案】(1)点P的坐标为(-3,0)或(0,-
);(2)
.
【解析】
(1)利用长方形OABC的面积分为1:4两部分,得出等式求出AP的长,即可得出P点坐标,再求出PC的长,即可得出OP的长,进而得出答案;
(2)首先求出∠MCF=2∠CMB,即可得出∠CNM=∠AMC-∠NCM=2∠BMC-2∠DCM=2∠BMC-2∠EMC=2∠D,得出答案.
(1)如图1,若过点B的直线BP与边OA交于点P,依题意可知:
×AB×AP=
×OA×OC,
![]()
即
×3×AP=
×5×3,
∴AP=2
∵OA=5,
∴OP=3,
∴P(-3,0),
若过点B的直线BP与边OC交于点P,依题意可知:
×BC×PC=
×OA×OC,
即
×5×PC=
×5×3,
∴PC=![]()
∵OC=3,
∴OP=
,
∴P(0,-
).
综上所述,点P的坐标为(-3,0)或(0,-
).
(2)如图2,延长BC至点F,
∵四边形OABC为长方形,
∴OA∥BC.
∴∠CBM=∠AMB,∠AMC=∠MCF.
∵∠CBM=∠CMB,
∴∠MCF=2∠CMB.
过点M作ME∥CD交BC于点E,
∴∠EMC=∠MCD.
又∵CD平分∠MCN,
∴∠NCM=2∠EMC.
∴∠D=∠BME=∠CMB-∠EMC,
∠CNM=∠AMC-∠NCM=2∠BMC-2∠DCM=2∠BMC-2∠EMC=2∠D,
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为表彰在美术展览活动中获奖的同学,老师决定购买一些水笔和颜料盒作为奖品,请你根据图中所给的信息,解答下列问题;

(1)求出每个颜料盒,每支水笔各多少元?
(2)若学校计划购买颜料盒和水笔共20个,所用费用不超过340元,则颜料盒至多购买多少个?
(3)恰逢商店举行优惠促销活动,具体办法如下:颜料盒按七折优惠,水笔10支以上超出部分按八折优惠,若学校决定购买同种数量的同一奖品,并且该奖品的数量超过10件,请你帮助分析,购买颜料盒合算还是购买水笔合算. -
科目: 来源: 题型:
查看答案和解析>>【题目】A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围.
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来.
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据问题填空:
(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=
,试求EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4)与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.

(1)求抛物线的解析式;
(2)若点F事直线BC上方的抛物线上的一个动点,是否存在点F,使四边形ABFC的面积为15?若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)老师在课上给出了这样一道题目:如图(1),等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.
小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.
(2)(类比探究)
老师引导同学继续研究:
①等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E ,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图(2)中补全图形并求DE的长.
②已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E, Q为哪一个(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.( 直接写出答案的编号)


相关试题