【题目】如图,
平分
于
交OB于E
,求CD的长.
![]()
参考答案:
【答案】10cm
【解析】试题分析:
过点C作CF⊥OB于点F,由OC平分∠AOB,CD⊥OA可得CD=CF;由OC平分∠AOB,CE∥OA,可得∠EOC=∠DOC=∠ECO=15°,从而可得CE=OE=20cm,∠CEF=∠EOC+∠ECO=30°,结合CF⊥OB于点F可得CF=
CE=10cm,由此即可得到CD=10cm.
试题解析:
如图,过点C作CF⊥OB于点F,
∵OC平分∠AOB,CD⊥OA,
∴CD=CF,∠EOC=∠DOC=15°,
∵CE∥OA,
∴∠EOC=∠DOC=∠ECO=15°,
∴CE=OE=20cm,∠CEF=∠EOC+∠ECO=30°,
又∵CF⊥OB于点F,
∴CF=
CE=10cm,
∴CD=10cm.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】知识再现:已知,如图,四边形ABCD是正方形,点M、N分别在边BC、CD上,连接AM、AN、MN,∠MAN=45°,延长CB至G使BG=DN,连接AG,根据三角形全等的知识,我们可以证明MN=BM+DN.
知识探究:(1)在如图中,作AH⊥MN,垂足为点H,猜想AH与AB有什么数量关系?并证明;
知识应用:(2)如图,已知∠BAC=45°,AD⊥BC于点D,且BD=2,AD=6,则CD的长为 ;
知识拓展:(3)如图,四边形ABCD是正方形,E是边BC的中点,F为边CD上一点,∠FEC=2∠BAE,AB=24,求DF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )

A. 当AB=BC时,它是菱形 B. 当AC⊥BD时,它是菱形
C. 当∠ABC=90°时,它是矩形 D. 当AC=BD时,它是正方形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“保护好环境,拒绝冒黑烟”荆州市公交公司将淘汰一条线路上“冒黑烟”较严重的公交车,计划购买
型和
型两种环保节能公交车
辆,若购买
型公交车
辆,
型公交车
辆,共需
万元,若购买
型公交车
辆,
型公交车
辆,共需
万元.(1)求购买购买
型和
型公交车每辆多少钱?(2)预计在该线路上
型和
型公交车每辆年均载客量分别为
万人次和
万人次,若该公司购买
型和
型公交车的总费用不超过
万元,且确保这
辆公交车在该线路上的年平均载客总和不少于
万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少费用为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形ABCD中
平分
交BC于
平分
交AD于F.(1)说明四边形AECF为平行四边形;
(2)求四边形AECF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,OA=2,OB=3,现同时将点A,B分别向上平移2个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C、D的坐标及四边形ABDC的面积;
(2)若点Q在线的CD上移动(不包括C,D两点).QO与线段AB,CD所成的角∠1与∠2如图所示,给出下列两个结论:①∠1+∠2的值不变;②
的值不变,其中只有一个结论是正确的,请你找出这个结论,并求出这个值.(3)在y轴正半轴上是否存在点P,使得S△CDP=S△PBO?如果有,试求出点P的坐标.

相关试题