【题目】矩形ABCD中
平分
交BC于
平分
交AD于F.
(1)说明四边形AECF为平行四边形;
(2)求四边形AECF的面积.
![]()
参考答案:
【答案】(1)见解析;(2)30cm2
【解析】试题分析:
(1)由四边形ABCD是矩形可得AD∥BC(即AF∥CE),AB∥CD,由此可得∠BAC=∠ACD,结合AE平分∠BAC,CF平分∠ACD可得∠EAC=∠FCA,即可得到AE∥CF,从而可得四边形AECF是平行四边形;
(2)如图,过点E作EO⊥AC于点O,结合∠B=90°及AE平方∠BAC可得EO=EB,证Rt△ABE≌Rt△AOE可得AO=AB=6,在Rt△ABC中由勾股定理易得AC=10,从而可得OC=4,设CE=x,则EO=BE=BC-CE=8-x,这样在Rt△OEC中由勾股定理建立方程,解方程即可求得CE的值,这样就可求出四边形AECF的面积了.
试题解析:
(1)∵四边形ABCD是矩形,
∴AD∥BC(即AF∥CE),AB∥CD,
∴∠BAC=∠ACD,
又∵AE平分∠BAC,CF平分∠ACD,
∴∠EAC=∠FCA,
∴AE∥CF,
∴四边形AECF是平行四边形;
(2)过点E作EO⊥AC于点O,
∵∠B=90°,AE平分∠BAC,
∴EO=BO,
∵AE=AE,
∴Rt△ABE≌Rt△AOE,
∴AO=AB=6,
∵在Rt△ABC,AC=
,
∴OC=AC-AO=4(cm),
设CE=x,则EO=BE=BC-CE=8-x,
∴在Rt△OEC中由勾股定理可得:
,解得:
,
∴EC=5,
∴S四边形AECF=CE·AB=5×6=30(cm2).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
平分
于
交OB于E
,求CD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“保护好环境,拒绝冒黑烟”荆州市公交公司将淘汰一条线路上“冒黑烟”较严重的公交车,计划购买
型和
型两种环保节能公交车
辆,若购买
型公交车
辆,
型公交车
辆,共需
万元,若购买
型公交车
辆,
型公交车
辆,共需
万元.(1)求购买购买
型和
型公交车每辆多少钱?(2)预计在该线路上
型和
型公交车每辆年均载客量分别为
万人次和
万人次,若该公司购买
型和
型公交车的总费用不超过
万元,且确保这
辆公交车在该线路上的年平均载客总和不少于
万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少费用为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,OA=2,OB=3,现同时将点A,B分别向上平移2个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C、D的坐标及四边形ABDC的面积;
(2)若点Q在线的CD上移动(不包括C,D两点).QO与线段AB,CD所成的角∠1与∠2如图所示,给出下列两个结论:①∠1+∠2的值不变;②
的值不变,其中只有一个结论是正确的,请你找出这个结论,并求出这个值.(3)在y轴正半轴上是否存在点P,使得S△CDP=S△PBO?如果有,试求出点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小聪和小明分别从相距30公里的甲、乙两地同时出发相向而行,小聪骑摩托车到达乙地后立即返回甲地,小明骑自行车从乙地直接到达甲地,函数图象y1(km)和y2(km)分别表示小聪离甲地的距离和小明离乙地的距离与已用时间t(h)之间的关系,如图所示.下列说法:①折线段OAB是表示小聪的函数图象y1,线段OC是表示小明的函数图象y2;②小聪去乙地和返回甲地的平均速度相同;③两人在出发80分钟后第一次相遇;④小明骑自行车的平均速度为15km/h,其中不正确的个数为( )

A. 0个 B. 1个 C. 2个 D. 3个
-
科目: 来源: 题型:
查看答案和解析>>【题目】“国际无烟日”来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图所示统计图,请根据图中的信息回答下列问题:

(1)被调查者中,不吸烟者中赞成“彻底禁烟”的人数有______人;
(2)本次抽样调查的样本容量为_______;
(3)被调查中,希望建立吸烟室的人数有______;
(4)某市现有人口约30万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有______万人。
相关试题