【题目】如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.
![]()
参考答案:
【答案】(1)60°;(2)不变化,∠APB=2∠ADB ,理由详见解析;(3)∠ABC=30°
【解析】
(1)根据平行线的性质与角平分线的性质即可求解;(2)根据平行线的性质与角平分线的性质即可求得∠APB=2∠ADB(3)根据三角形的内角和即可求解.
解:(1)∵AM∥BN,
∴∠A+∠ABN=180°,
∵∠A=60°
∴∠ABN=120°
∵BC、BD分别平分∠ABP和∠PBN,
∴∠CBP=
∠ABP, ∠DBP=
∠NBP,
∴∠CBD=∠CBP +∠DBP=
∠ABN=60°
(2)不变化,∠APB=2∠ADB,理由:
∵AM∥BN,
∴∠APB=∠PBN
∠ADB=∠DBN
又∵BD平分∠PBN,
∴∠PBN =2∠DBN
∴∠APB=2∠ADB
(3)在△ABC中,∠A+∠ACB+∠ABC=180°,
在△ABD中,∠A+∠ABD+∠ADB=180°,
∵∠ACB=∠ABD,∴∠ABC=∠ADB
∵AD∥BN,∠A=60°,
∴∠ABN=120°,∠ADB=∠DBN=∠ABC,
由(1)知∠CBD=60°,
∴∠ABC=
(∠ABN-∠CBD)=30°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图点A(a,0)在x轴负半轴,点B(b,0)在x轴正半轴,点C(0,c)在y轴正半轴,且
.(1)如图1,求S△ABC;
(2)如图2,若点D(0,5),BD的延长线交AC于E,求∠AEB;
(3)如图3,在(2)的条件下,将线段BA绕点B逆时针旋转90°至线段BF,连接EF,试探究EA,EB,EF之间有怎样的数量关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为
,
,则
关于
的函数解析式是_______________________________. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数的图像经过点(0,3)、(3,0)和(1,4).
(1)求该二次函数的表达式;
(2)若该二次函数图像的顶点为P,与x轴分别交于点A、B,求△ABP的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线交⊙O于点D.
(1)图①,当BC为⊙O的直径时,求BD的长;
(2)图②,当BD=5时,求∠CDB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2+(k-1)x-2k-3.
(1)求证:该二次函数图像与x轴总有两个公共点;
(2)若点A(-1,y1)、B(1,y2)在该二次函数的图像上,且y1>y2,求k的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AD为△ABC的中线,O为AB上一点,以O为圆心,AO为半径的⊙O与AB交于点F,与BC交于点E.连接AE,AE平分∠BAD.
(1)求证:BC与⊙O相切于点E;
(2)若AB=10,BC=16,求⊙O的半径;
(3)若AD与⊙O的交点为△ABC的重心,则
的值为 .
相关试题