【题目】如图,一次函数y=kx+b分别交y轴、x轴于C、D两点,与反比例函数y=
(x>0)的图象交于A(m,8),B(4,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出kx+b﹣
<0的x的取值范围;
(3)求△AOB的面积.
![]()
参考答案:
【答案】(1)y=﹣2x+10;(2)15.
【解析】分析:(1)依据反比例函数y=
(x>0)的图象经过A(m,8),B(4,n)两点,即可得到m=1,n=2,把A(1,8),B(4,2),代入一次函数y=kx+b,可得一次函数的解析式为y=-2x+10;
(2)依据函数图象,即可得到出kx+b-
<0的x的取值范围;
(3)依据D(5,0),可得OD=5,再根据△AOB的面积=△AOD的面积-△BOD的面积,进行计算即可得到结论.
详解:(1)∵反比例函数y=
(x>0)的图象经过A(m,8),B(4,n)两点,
∴8m=8,4n=8,
解得m=1,n=2,
∴A(1,8),B(4,2),
代入一次函数y=kx+b,可得
,
解得
,
∴一次函数的解析式为y=-2x+10;
(2)由图可得,kx+b-
<0的x的取值范围是0<x<1或x>4;
(3)在y=-2x+10中,令y=0,则x=5,即D(5,0),
∴OD=5,
∴△AOB的面积=△AOD的面积-△BOD的面积
=
×5×8-×5×2
=15.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:

(1)在坐标系内描出点A, B, C的位置.
(2)画出
关于直线x=-1对称的
,并写出
各点坐标.(3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )

A. 75° B. 80° C. 85° D. 90°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=
,AD=2.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,AB的长是4,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB;
(2)若cos∠DAC=
,求弧BC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2+bx+c与x轴分别交于A(1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)过点C(﹣3,0)在x轴下方作x轴的垂线,再以点A为圆心、5为半径长画弧,交先前所作垂线于D,连接AD(如图),将Rt△ACD沿x轴向右平移m个单位,当点D落在抛物线上时,求m的值;
(3)在(2)的条件下,当点D第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

相关试题