【题目】我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D-d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:
![]()
A(1,0)的距离跨度______________;
B(-
,
)的距离跨度____________;
C(-3,-2)的距离跨度____________;
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是______________.
(2)如图2,在平面直角坐标系xOy中,图形G2为以D(-1,0)为圆心,2为半径的圆,直线y=k(x-1)上存在到G2的距离跨度为2的点,求k的取值范围.
![]()
(3)如图3,在平面直角坐标系xOy中,射线OP:y=
x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,求出圆心E的横坐标xE的取值范围.
![]()
参考答案:
【答案】(1)①2;2,4;②以O为圆心,半径为1的圆;(2)-
≤k≤
;(3)-1≤xE≤2 .
【解析】试题分析:(1)①先根据跨度的定义先确定出点到圆的最小距离d和最大距离D,即可得出跨度;
②分点在圆内和圆外两种情况同①的方法计算,判定得出结论;
(2)先判断出存在的点P必在圆O内,设出点P的坐标,利用点P到圆心O的距离的2倍是点P到圆的距离跨度,建立方程,由于存在距离跨度是2的点,此方程有解即可得出k的范围.
(3)同(2)方法判断出存在的点P在圆C内部,由于在射线OA上存在距离跨度是2的点,同(2)的方法建立方程,用一元二次方程根与系数的关系和根的判别式即可确定出范围.
试题解析:
(1)①∵图形G1为以O为圆心,2为半径的圆,
∴直径为4,
∵A(1,0),OA=1,
∴点A到⊙O的最小距离d=1,
点A到⊙O的最大距离D=3,
∴点A到图形G1的距离跨度R=D-d=3-1=2;
∵B![]()
∴点B到⊙O的最小距离d=BG=OG-OB=1,
点B到⊙O的最大距离D=BF=FO+OB=2+1=3,
∴点B到图形G1的距离跨度R=D-d=3-1=2;
∵C(-3,-2),
∴OC=![]()
∴点C到⊙O的最小距离d=CD=OC-OD=
-2.
点C到⊙O的最大距离D=CE=OC+OE=2+![]()
∴点C到图形G1的距离跨度R=D-d=2+
-(
-2))=4;
故答案为2,2,4.
②a、设⊙O内一点P的坐标为(x,y),
∴OP=
∴点P到⊙O的最小距离d=2-OP,点P到⊙O的最大距离D=2+OP,
∴点P到图形G1的距离跨度R=D-d=2+OP-(2-OP)=2OP;
∵图形G1的距离跨度为2,
∴2OP=2,
∴OP=1,
∴
=1
∴x2+y2=1,
即:到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.
b、设⊙O外一点Q的坐标为(x,y),
∴OQ=![]()
∴点Q到⊙O的最小距离d=OQ-2,点P到⊙O的最大距离D=OQ+2,
∴点P到图形G1的距离跨度R=D-d=OQ+2-(OQ-2)=4;
∵图形G1的距离跨度为2,
∴此种情况不存在,
所以,到图形G1的距离跨度为2的所有的点组成的图形的形状是以点O为圆心,1为半径的圆.
故答案为:圆;
(2)设直线y=k(x+1)上存在到G2的距离跨度为2的点P(m,k(m+1)),
∴OP=
由(1)②知,圆内一点到图形圆的跨度是此点到圆心距离的2倍,圆外一点到图形圆的跨度是此圆的直径,
∵图形G2为以C(1,0)为圆心,2为半径的圆,到G2的距离跨度为2的点,
∴距离跨度小于图形G2的圆的直径4,
∴点P在图形G2⊙C内部,
∴R=2OP=2![]()
∵直线y=k(x+1)上存在到G2的距离跨度为2的点P,
∴2
=2
∴(k2+1)m2+2(k2-1)m+k2=0①,
∵存在点P,
∴方程①有实数根,
∴△=4(k2-1)2-4×(k2+1)k2=-12k2+4≥0,
(3)如图,作EC⊥OP于C,交⊙E于D、H.![]()
由题意:⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,此时以E为圆心1为半径的圆与射线OP相切,当以E为圆心1为半径的圆与射线OP有交点时,满足条件,
∴CD=2,CH=4,CE=1,
∵射线OP的解析式为y=
,
∴∠COE=30°,OE=2CE=2,
当E′(-1,0)时,点O到⊙E的距离跨度为2,
观察图象可知,满足条件的圆心E的横坐标xE的取值范围:-1≤xE≤2.
故答案为:-1≤xE≤2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,M,N,P,R分别是数轴上的四个整数所对应的点,其中有一个点是原点,并且,MN=NP=PR=1,数a对应的点在M和N之间,数b对应的点在P和R之间,若|a|+|b|=2,则原点是(填M,N,P,R中的一个或几个)_____________

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.
(1)如图1,若∠ABC=30°,则∠CAD的度数为________.
(2)已知AC=1,BC=3.
①依题意将图2补全;
②求CD的长;
(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明有 5 张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:

(1)从中取出 2 张卡片,使这 2 张卡片上数字的乘积最大,乘积的最大值为 ;
(2)从中取出 2 张卡片,使这 2 张卡片上数字相除的商最小,商的最小值为 ;
(3)从中取出 4 张卡片,用学过的运算方法,使结果为 24.写出运算式子.(写出一种即可)算 24 的式子为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完;商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,售价每台也上调了200元.
(1)商场第一次购入的空调每台进价是多少元?
(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
【答案】(1)2400元;(2)8台.
【解析】试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;
(2)设最多将
台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得
解得
经检验,
是原方程的解.答:第一次购入的空调每台进价是2 400元.
(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).
设第二次将y台空调打折出售,由题意,得
解得
答:最多可将8台空调打折出售.
【题型】解答题
【结束】
23【题目】在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.
(1)求证: AB·BH=2BG·EH
(2)若∠CGF=90°,
=3时,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①2a+b=0;②abc<0;③b2﹣4ac>0;④8a+c>0.其中正确的有( )

A. 0个 B. 1个 C. 2个 D. 3个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2-EA2=AC2,
(1)求证:∠A=90°.
(2)若DE=3,BD=4,求AE的长.

相关试题