【题目】如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC. ![]()
(1)求点C的坐标;
(2)求这个二次函数的解析式,并求出该函数的最大值.
参考答案:
【答案】
(1)解:∵A(﹣1,0)、B(3,0),
∴AO=1,OB=3,即AB=AO+OB=1+3=4.
∴OC=4,即点C的坐标为(0,4)
(2)解:设图象经过A、C、B三点的二次函数的解析式为y=ax2+bx+c,把A、C、B三点的坐标分别代入上式,
得
,
解得a=﹣
,b=
x,c=4,
∴所求的二次函数解析式为y=﹣
x2+
x+4.
∵点A、B的坐标分别为点A(﹣1,0)、B(3,0),
∴线段AB的中点坐标为(1,0),即抛物线的对称轴为直线x=1.
∵a=﹣
<0,
∴当x=1时,y有最大值y=﹣
+
+4= ![]()
【解析】(1)首先求得AB,得出OC,求得点C的坐标;(2)利用待定系数法求的函数解析式,进一步利用顶点坐标公式求得最值即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1 .

(1)线段OA1的长是 , ∠AOB1的度数是;
(2)连接AA1 , 求证:四边形OAA1B1是平行四边形;
(3)求点B旋转到点B1的位置所经过的路线的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设
=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是
时,求AB的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+
m的顶点为A,与y轴交于点B.当抛物线不经过坐标原点时,分别作点A、B关于原点的对称点C、D,连结AB、BC、CD、DA.(1)分别用含有m的代数式表示点A、B的坐标.
(2)判断点B能否落在y轴负半轴上,并说明理由.
(3)连结AC,设l=AC+BD,求l与m之间的函数关系式.
(4)过点A作y轴的垂线,交y轴于点P,以AP为边作正方形APMN,MN在AP上方,如图②,当正方形APMN与四边形ABCD重叠部分图形为四边形时,直接写出m的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】张老师驾车从家出发到植物园赏花,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后加速行驶,到达植物园,参观结束后,张老师驾车一路匀速返回,其中x表示汽车从家出发后所用时间,y表示车离家的距离,下面能反映y与x的函数关系式的大致图象是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从﹣2,﹣
,
,1,3五个数中任选1个数,记为a,它的倒数记为b,将a,b代入不等式组
中,能使不等式组至少有两个整数解的概率是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.
求证:BD=DE.

相关试题