【题目】如图,在等腰梯形ABCD中,AB∥DC,AB=16cm,CD=10cm,AD=5cm DE⊥AB,垂足为E,点P从点A出发,以2cm/秒的速度沿AB向终点B运动;点Q从点C出发,以1cm/秒的速度沿CD向终点D运动(P,Q两点中,有一个点运动到终点时,所有运动即终止),设P,Q同时出发并运动了t秒.
![]()
(1)当四边形EPQD为矩形时,求t的值.
(2)当以点E、P、C、Q为顶点的四边形是平行四边形时,求t的值;
(3)探索:是否存在这样的t值,使三角形PDQ是以PD为腰的等腰三角形?若存在,求出t的值,若不存在,请说明理由.
参考答案:
【答案】(1)t=
;(2)t=1或t=3;(3)见解析
【解析】
试题分析:(1)首先过点C作CF⊥AB于点F,可得AE=BF=3cm,由AB∥CD,∠DEF=90°,可得当EP=DQ时,四边形EPQD为矩形,即可得方程:2t﹣3=10﹣t,解此方程即可求得答案;
(2)由AB∥CD,可得当AP=CQ时,以点E、P、C、Q为顶点的四边形是平行四边形,然后分别从当P在AE左侧时与当P在AE右侧时去分析求解即可求得答案;
(3)首先由勾股定理表示出PD2,DQ2,PQ2,然后分别从PD=DQ或PD=PQ去分析求解即可求得答案.
解:(1)过点C作CF⊥AB于点F,
∵在等腰梯形ABCD中,AB∥DC,DE⊥AB,
∴DE=CF,
在Rt△ADE和Rt△BCF中,
,
∴Rt△ADE≌Rt△BCF(HL);
∴BF=AE,
∵AB=16cm,CD=10cm,
∴AE=BF=3cm,
根据题意得:AP=2tcm,CQ=tcm,
∴EP=AP﹣AE=2t﹣3(cm),DQ=CD﹣CQ=10﹣t(cm),
∵AB∥CD,∠DEF=90°,
∴当EP=DQ时,四边形EPQD为矩形,
∴2t﹣3=10﹣t,
解得:t=
,
∴当四边形EPQD为矩形时,t=
;
(2)∵AB∥CD,
∴当AP=CQ时,以点E、P、C、Q为顶点的四边形是平行四边形,
当P在AE左侧时,EP=AE﹣AP=3﹣2t(cm),
此时3﹣2t=t,解得:t=1,
当P在AE右侧时,EP=AP﹣AE=2t﹣3(cm),
此时2t﹣3=t,解得:t=3,
∴当以点E、P、C、Q为顶点的四边形是平行四边形时,t=1或t=3;
(3)存在.
理由:在Rt△ADE中,AE=3,AD=5,
∴DE=
=4,
∴PD2=PE2+DE2=(2t﹣3)2+42=4t2﹣12t+25,DQ2=(10﹣t)2=t2﹣20t+100,
过点Q作QM⊥AB于点M,则BM=BF+FM=3+t,
∴PM=AB﹣AP﹣BM=13﹣3t(cm),
∴PQ2=QM2+PM2=(13﹣3t)2+42=9t2﹣78t+185,
若PD=DQ,则4t2﹣12t+25=t2﹣20t+100,
解得:t=
(负值舍去);
若PD=PQ,则4t2﹣12t+25=9t2﹣78t+185,
解得:t1=
,t2=10(舍去),
综上可得:t=
或t=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.
(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移
个单位长度得到点B,判断四边形OABC的形状并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学举行了一次“世博”知识竞赛.赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:

请根据以上图表提供的信息,解答下列问题:
(1)写出表格中m和n所表示的数:m= ,n= ,并补全频数分布直方图;
(2)抽取部分参赛同学的成绩的中位数落在第 组;
(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据所给信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,ABCD中,E、F分别是边AB、CD的中点.

(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
相关试题