【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠ACD的度数.
![]()
参考答案:
【答案】(1)证明见解析;(2)60°
【解析】试题分析:(1)利用SAS即可得证;
(2)由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数,进而利用三角形的内角和得出∠ACD的度数.
试题解析:
(1)证明:在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
(2)∵在△ABC中,AB=CB,∠ABC=90°,
∴∠BAC=∠ACB=45°,
由(1)得:△ABE≌△CBD,
∴∠AEB=∠BDC,
∵∠AEB为△AEC的外角,
∴∠AEB=∠ACB+∠CAE=30°+45°=75°,
∴∠BDC=75°.
∴∠ACD=180°﹣∠BAC﹣∠BDC=180°﹣45°﹣75°=60°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明同学骑自行车去郊外春游,骑行1小时后,自行车出现故障,维修好后继续骑行,下图表示他离家的距离y(千米)与所用的时间x(时)之间关系的图象.
(1)根据图象回答:小明到达离家最远的地方用了多长时间?此时离家多远?
(2)求小明出发2.5小时后离家多远;
(3)求小明出发多长时间离家12千米.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,
请按要求完成下列各题:
(1)用2B铅笔画AD∥BC(D为格点),连接CD;
(2)线段CD的长为 ;
(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是 ,则它所对应的正弦函数值是 ;
(4)若E为BC中点,则tan∠CAE的值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,延长
至点
,使
,连接
,以
为直角边在
左侧作等腰三角形
,其中
,连接
.
(1)求证:
;(2)若
,求
的长.(3)
与
有何位置关系?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
,点
是射线
上一动点(与点
不重合),
分别平分
和
,分别交射线
于点
.
(1)
;
;(2)当点
运动到某处时,
,求此时
的度数.(3)当点
运动时,
:
的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律; -
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.
(1)本次共抽查学生 人,并将条形图补充完整;
(2)捐款金额的众数是 平均数是 中位数为
(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展课类别,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:

(1)此次共调查了多少人?
(2)请将条形统计图补充完整
(3)求文学类课程在扇形统计图中所占圆心角的度数;
(4)若该校有1500名学生,请估计喜欢体育类拓展课的学生人数.
相关试题