【题目】如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
![]()
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
参考答案:
【答案】(1)3;(2)证明见解析;(3)
.
【解析】试题分析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;
(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;
(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.
解:(1)∵AB与圆O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD=
=,
∴OD=3;
(2)连接OE,
∵AE=OD=3,AE∥OD,
∴四边形AEOD为平行四边形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE为圆的半径,
∴AE为圆O的切线;
(3)∵OD∥AC,
∴
=
,即
=
,
∴AC=7.5,
∴EC=AC﹣AE=7.5﹣3=4.5,
∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG
=×2×3+×3×4.5﹣![]()
=3+
﹣![]()
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长是acm,计算:
(1)窗户的面积;
(2)窗户的外框的总长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.
(1)用含有x的代数式表示BC的长,BC= ;
(2)求y与x的函数关系式,写出自变量x的取值范围;
(3)当x为何值时,y有最大值?最大值为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
与反比例函数
的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;
(2)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标;
(3)观察图象,直接写出不等式
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把y=ax+b(其中a、b是常数,x、y是未知数)这样的方程称为“雅系二元一次方程”.当y=x时,“雅系二元一次方程y=ax+b”中x的值称为“雅系二元一次方程”的“完美值”.例如:当y=x时,“雅系二元一次方程”y=3x﹣4化为x=3x﹣4,其“完美值”为x=2.
(1)求“雅系二元一次方程”y=5x+6的“完美值”;
(2)x=3是“雅系二元一次方程”y=3x+m的“完美值”,求m的值;
(3)“雅系二元一次方程”y=kx+1(k≠0,k是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为24cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟2cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟4cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
(1)经过6秒后,BP= cm,BQ= cm;
(2)经过几秒△BPQ的面积等于
? (3)经过几秒后,△BPQ是直角三角形?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣3|,且a、b、c分别是点A、B、C在数轴上对应的数.

(1)求a、b、c的值;
(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?
(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒6个单位长度,点M追上点Q后立即返回沿数轴负方向运动,追上后点M再运动几秒,M到Q的距离等于M到P距离的两倍?
相关试题