【题目】如图,在△ABC中,∠ ACB=90°,点D在BC边上,且BD=BC,过点B作CD的垂线交AC于点O,以O为圆心,OC为半径画圆.
(1)求证:AB是⊙O的切线;
(2)若AB=10,AD=2,求⊙O的半径.
![]()
参考答案:
【答案】(1)证明见解析;(2)⊙O的半径为![]()
【解析】(1)连接OD,先证△DBO≌△CBO,再证∠ODB=∠OCB=90°即可;(2)在Rt△ABC中由勾股定理建立方程,从而求出⊙O的半径.
(1)证明:连接OD
![]()
∵BD=BC,BO⊥CD
∴∠DBO=∠CBO
∵BD=BC,∠DBO=∠CBO,OB=OB
∴△DBO≌△CBO
∴OD=OC,∠ODB=∠OCB=90°
∴AB是⊙O的切线
(2)∵AB=10,AD=2,∴BC=BD=AB-AD=8
在Rt△ABC中,
设⊙O的半径为r,则OD=OC=r,AO=AC-OC=6-r
在Rt△ADO中,∵AD2+OD2=AO2
∴22+r 2=(6-r)2
解之得
,即⊙O的半径为![]()
“点睛”本题考查了圆的切线的判定以及勾股定理的运用,解题关键是在直角三角形中利用勾股定理列出方程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于整式(x﹣2)(x+n)运算结果中,一次项系数为2,则n=
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列各组数据中,不能作为直角三角形的三边边长的是( )
A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,15
-
科目: 来源: 题型:
查看答案和解析>>【题目】在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:

(1)本次共抽查了多少名学生?
(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x<155所在扇形的圆心角度数.
(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?
(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx经过A(2,0),B(3,-3)两点,抛物线的顶点为C,动点P在直线OB上方的抛物线上,过点P作直线PM∥y轴,交x轴于M,交OB于N,设点P的横坐标为m.
(1)求抛物线的解析式及点C的坐标;
(2)当△PON为等腰三角形时,点N的坐标为 ;当△PMO∽△COB时,点P的坐标为 ;(直接写出结果)
(3)直线PN能否将四边形ABOC分为面积比为1:2的两部分?若能,请求出m的值;若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,□ABCD的对角线相交于点O,将线段OD绕点O旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于H,连接DE.
(1)求证:DE⊥BC;
(2)若OE⊥CD,求证:2CE·OE=CD·DE;
(3)若OE⊥CD,BC=3,CE=1,求线段AC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△CEF均为等腰直角三角形,E在△ABC内,∠CAE+∠CBE=90°,连接BF.
(1)求证:△CAE∽△CBF.
(2)若BE=1,AE=2,求CE的长.

相关试题