【题目】如图,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,写出证明过程.
![]()
参考答案:
【答案】(1) ①②;①③.(2)证明见解析.
【解析】
试题(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,
(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.
试题解析:(1)①②;①③.
(2)选①③证明如下,
∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.


请根据以上信息解答问题:
(1)补全图1和图2;
(2)如果全校学生家庭总人数约为3 000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.
请根据以上信息,解答下列问题:
(1)将统计图补充完整;
(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1 , 此时AP1=
;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2 , 此时AP2=1+
;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3 , 此时AP3=2+
;…,按此规律继续旋转,直至得到点P2015为止.则AP2015= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司有10名销售业务员,去年每人完成的销售额情况如表:

(1)求10名销售员销售额的平均数、中位数和众数.(单位:万元)
(2)为了调动员工积极性,公司准备采取超额有奖措施,请问把标准定为多少万元时最合适?
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年学校举行足球联赛,在第一阶段的比赛中,每队都进行了8场比赛,小虎足球队胜了4场,平2场,负2场,得14分;小豹足球队胜了6场,平1场,负1场,得19分.已知,记分规则中,负1场得0分.
(1)求胜1场、平1场各得多少分?
(2)足球联赛结束后,小狮足球队共参加了17场比赛,得了24分,且踢平场数是所胜场数的正整数倍,请你想一想,小狮足球队所负场数有______种可能性.
-
科目: 来源: 题型:
查看答案和解析>>【题目】书籍是人类进步的阶梯.联合国教科文组织把每年的4月23日确定为“世界读书日”.某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了统计图表的一部分:

请你根据以上信息解答下列问题:
(1)补全图1、图2;
(2)这100名学生一个学期平均每人阅读课外书籍多少本?若该校共有4000名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?
(3)根据统计表,求一个学期平均一天阅读课外书籍所用时间的众数和中位数.
相关试题