【题目】如图,已知⊙O与等腰△ABD的两腰AB、AD分别相切于点E、F,连接AO并延长到点C,使OC=AO,连接CD、CB.
(1)试判断四边形ABCD的形状,并说明理由;
(2)若AB=4cm,填空:
①当⊙O的半径为 cm时,△ABD为等边三角形;
②当⊙O的半径为 cm时,四边形ABCD为正方形.
![]()
参考答案:
【答案】(1)菱形,理由见解析;(2)①
;②2.
【解析】分析:(1)由AB、AD分别相切于点E、F,得到∠EAO=∠FAO,于是得到OD=OB,根据AO=OC,推出四边形ABCD是平行四边形,于是得到结论;
(2)①连接OE由切线的性质得到OE⊥AD,由△ABD为等边三角形,得到BD=AB=AD=4,根据直角三角形的性质得到结论由正方形的性质得到∠DAO=∠ADO=45°,由AD=AB=4,得到OA=OD=2
,根据等腰直角三角形的性质即可得到结论.
详解:(1)四边形ABCD是菱形,
理由如下:∵AB、AD分别相切于点E、F,
∴∠EAO=∠FAO,
∴OD=OB,
∵AO=OC,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴ABCD是菱形;
(2)①当⊙O的半径为
时,△ABD为等边三角形;
连接OE,∵AD切⊙O于点E,
∴OE⊥AD,
∵△ABD为等边三角形,
∴BD=AB=AD=4,
∴∠DAO=30°,
∴OD=
BD=2,AO=2
,
∴OE=
AO=
,
∴当⊙O的半径为
时,△ABD为等边三角形;
故答案为:
;
②当⊙O的半径为2cm时,四边形ABCD为正方形;
如图,∴∠DAO=∠ADO=45°,
∵AD=AB=4,
∴OA=OD=2
,
由(2)知,OE⊥AD,
∴OE=AE=2,
∴当⊙O的半径为2cm时,四边形ABCD为正方形;
故答案为:2.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】电业部门每月都按时取居民家查电表,电表读数与上次读数的差就是这段时间内用电的千瓦时数.上月初小亮家电表显示的度数为
,本月初电表显示的读数为
.(1)小亮家上月用电多少千瓦时?
(2)如果每千瓦时的电费为
元,全月的电费为
(元),那么上月小亮家应缴费电费与本月初电表显示读数之间的关系式是什么?(3)在问题(2)中,哪些量是常量?哪些量是变量?
是哪个变量的函数? -
科目: 来源: 题型:
查看答案和解析>>【题目】试根据图中信息,解答下列问题.

(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:
(1)此次抽样调查的样本容量是
(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.

图1 图2 图3
-
科目: 来源: 题型:
查看答案和解析>>【题目】The coordinates of the three points A.B.C on the plane are (﹣5,﹣5),(﹣2,﹣1)and(﹣1,﹣2)respectively,the triangle ABC is( )
(英汉小词典:right直角的;isosceles等腰的;equilateral等边的;obtuse钝角的)
A. a right trisngleB. an isosceles triangle
C. an equilateral triangleD. an obtuse triangle
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,

请回答下列问题:
(1)这次被调查的学生共有多少人?
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
相关试题