【题目】如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 .
![]()
参考答案:
【答案】1+
.
【解析】试题解析:连接CE,交AD于M,
![]()
∵沿AD折叠C和E重合,
∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,
∴AD垂直平分CE,即C和E关于AD对称,CD=DE=1,
∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
∵∠DEA=90°,
∴∠DEB=90°,
∵∠B=60°,DE=1,
∴BE=
,BD=
,
即BC=1+
,
∴△PEB的周长的最小值是BC+BE=1+
+
=1+
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】81的算术平方根是( )
A. 9B. -9C. ±9D. 不存在
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.
(1)求每吨水的基础价和调节价;
(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;
(3)若某月用水12吨,应交水费多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB:y=一
x+2与x轴相交于点A,与y轴交于点B.直线CD:y=kx+b经过点c(一1,0),D(0,
),与直线AB交于点E.
(1)求直线CD的函数关系式;
(2)连接BC,求△BCE的面积;
(3)设点Q的坐标为(m,2),求m的值使得QA+QE值最小. -
科目: 来源: 题型:
查看答案和解析>>【题目】问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为 .
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将命题“同角的余角相等”改成“如果...,那么....”的形式.如果____________,那么______________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】∠A的两边与∠B的两边分别平行,∠A=50°,则∠B的度数为 ____________.
相关试题