【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于D.
![]()
(1)动手操作:利用尺规作⊙O,使⊙O经过点A、D,且圆心O在AB上;并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法);
(2)综合应用:在你所作的图中,
①判断直线BC与⊙O的位置关系,并说明理由;
②若AB=6,BD=2
,求线段BD、BE与劣弧
所围成的图形面积(结果保留根号和π).
参考答案:
【答案】(1)图形见解析(2)①相切;②2
﹣
π
【解析】
试题分析:(1)根据题意得:O点应该是AD垂直平分线与AB的交点;
(2)①由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证;
②设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为:
=2
﹣
π”.
试题解析:(1)如图1;
(2)①如图1,连接OD,
∵OA=OD,
∴∠OAD=∠ADO,
∵∠BAC的角平分线AD交BC边于D,
∴∠CAD=∠OAD,
∴∠CAD=∠ADO,
∴AC∥OD,
∵∠C=90°,
∴∠ODB=90°,
∴OD⊥BC,
即直线BC与⊙O的切线,
∴直线BC与⊙O的位置关系为相切;
(2)如图2,设⊙O的半径为r,则OB=6﹣r,又BD=2
,
在Rt△OBD中,
OD2+BD2=OB2,
即r2+(2
)2=(6﹣r)2,
解得r=2,OB=6﹣r=4,
∴∠DOB=60°,
∴
=
,
=
ODBD=
×2×2
=2
,
∴线段BD、BE与劣弧DE所围成的图形面积为:
=2
﹣
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,已知∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,完成下列推理过程.
已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO.
证明:CF∥DO.

证明:∵DE⊥AO,BO⊥AO(已知)
∴∠DEA=∠BOA=90°( )
∴DE∥BO( )
∴∠EDO=∠DOF( )
又∵∠CFB=∠EDO( ④ )
∴∠DOF=∠CFB( ⑤ )
∴CF∥DO( ⑥ )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
(1)求证:CF=EB.
(2)若AF=2,EB=1,求AB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在单位正方形网格中,建立了平面直角坐标系xOy,试解答下列问题:
(1)写出三角形ABC三个顶点的坐标;
(2)画出三角形ABC向右平移6个单位,再向下平移2个单位后的图形三角形DEF;
(3)若点P(a,b)是三角形ABC内部一点,求平移后三角形A,B,C,内的对应点P,的坐标.
(4)求三角形DEF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:-3+2=________.
相关试题