【题目】如图,在单位正方形网格中,建立了平面直角坐标系xOy,试解答下列问题:
(1)写出三角形ABC三个顶点的坐标;
(2)画出三角形ABC向右平移6个单位,再向下平移2个单位后的图形三角形DEF;
(3)若点P(a,b)是三角形ABC内部一点,求平移后三角形A,B,C,内的对应点P,的坐标.
(4)求三角形DEF的面积.
![]()
参考答案:
【答案】(1)A、B、C三点坐标为A(-1,8),B(-4,3)C(0,6)(2)作图见解析(3)P,(a+6,b-2)(4)5.5
【解析】(1)根据坐标系得出各顶点坐标即可;(2)利用图形的平移性质得出对应点点坐标进而得出答案;(3)由点P(a,b)是三角形ABC内部一点,根据平移的性质即可求出点P,的坐标;(4)利用梯形的面积减去三角形的面积进而得出答案.
解:(1)A、B、C三点坐标为A(-1,8),B(-4,3)C(0,6)
(2)如图所示
![]()
(3)P′(a+6,b-2).
(4)△ABC的面积是
×(1+4)×5-
×1×2-
×4×3=55.
“点睛”此题主要考查了图形的平移以及三角形的面积求法等知识,利用已知得出对应点坐标是解题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,完成下列推理过程.
已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO.
证明:CF∥DO.

证明:∵DE⊥AO,BO⊥AO(已知)
∴∠DEA=∠BOA=90°( )
∴DE∥BO( )
∴∠EDO=∠DOF( )
又∵∠CFB=∠EDO( ④ )
∴∠DOF=∠CFB( ⑤ )
∴CF∥DO( ⑥ )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
(1)求证:CF=EB.
(2)若AF=2,EB=1,求AB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于D.

(1)动手操作:利用尺规作⊙O,使⊙O经过点A、D,且圆心O在AB上;并标出⊙O与AB的另一个交点E(保留作图痕迹,不写作法);
(2)综合应用:在你所作的图中,
①判断直线BC与⊙O的位置关系,并说明理由;
②若AB=6,BD=2
,求线段BD、BE与劣弧
所围成的图形面积(结果保留根号和π). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:-3+2=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列计算中,不能用平方差公式计算的是( )
A. (m-n)(-m+n) B. (x3-y3)(x3+y3)
C. (-a-b)(a-b) D. (c2–d2)(d2+c2)
相关试题