【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心OC为半径作半圆.![]()
(1)求证:AB为⊙O的切线;
(2)如果tan∠CAO=
,求cosB的值.
参考答案:
【答案】
(1)
解:如图作OM⊥AB于M,
∵OA平分∠CAB,OC⊥AC,OM⊥AB,
∴OC=OM,
∴AB是⊙O的切线,
(2)
解:设BM=x,OB=y,则y2﹣x2=1 ①,
∵cosB=
,
∴
,
∴x2+3x=y2+y ②,
由①②可以得到:y=3x﹣1,
∴(3x﹣1)2﹣x2=1,
∴x=
,y=
,
∴cosB=
=
.
![]()
【解析】(1)如图作OM⊥AB于M,根据角平分线性质定理,可以证明OM=OC,由此即可证明.(2)设BM=x,OB=y,列方程组即可解决问题.本题考查切线的判定、勾股定理、三角函数等知识,解题的关键是记住圆心到直线的距离等于半径,这条直线就是圆的切线,学会设未知数列方程组解决问题,属于中考常考题型.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线,以及对锐角三角函数的定义的理解,了解锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=
,那么当点P运动一周时,点Q运动的总路程为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(
)﹣1+(sin60°﹣1)0﹣2cos30°+|
﹣1| -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=
,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG. 
(1)求点B的坐标.
(2)当OG=4时,求AG的长.
(3)求证:GA平分∠OGE.
(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.

(1)求证:AEBC=ADAB;
(2)若半圆O的直径为10,sin∠BAC=
,求AF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.

(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
相关试题