【题目】如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为( ) ![]()
A.πcm2
B.
πcm2
C.
cm2
D.
cm2
参考答案:
【答案】C
【解析】解:过点C作CD⊥OB,CE⊥OA, ∵OB=OA,∠AOB=90°,
∴△AOB是等腰直角三角形,
∵OA是直径,
∴∠ACO=90°,
∴△AOC是等腰直角三角形,
∵CE⊥OA,
∴OE=AE,OC=AC,
在Rt△OCE与Rt△ACE中,
∵
,
∴Rt△OCE≌Rt△ACE,
∵S扇形OEC=S扇形AEC ,
∴
与弦OC围成的弓形的面积等于
与弦AC所围成的弓形面积,
同理可得,
与弦OC围成的弓形的面积等于
与弦BC所围成的弓形面积,
∴S阴影=S△AOB=
×1×1=
cm2 .
故选C.![]()
【考点精析】关于本题考查的等腰直角三角形和扇形面积计算公式,需要了解等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数( ),2008应排在A、B、C、D、E中的( ) 位置.其中两个填空依次为( )

A. 29,C B. ﹣29,D C. 30,B D. ﹣31,E
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣
),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒时其中一个四边形为平行四边形?

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,以此方法继续操作,即可拼成一个新的正方形DEFG.

请你参考小明的做法解决下列问题:
(1)现有5个形状,大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形,要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可).
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE,所得□MNPQ面积为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为( )

A.3
B.2
C.2
D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】将数1个1,2个
,3个
,…,n个
(n为正整数)顺次排成一列:1,
,
,
,
,
,…,
,
,…,记a1=1,a2=
,a3=
,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,则S2018=_____.
相关试题