【题目】已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒时其中一个四边形为平行四边形?
![]()
参考答案:
【答案】当8秒或10秒时,其中一个四边形是平行四边形.
【解析】试题分析:若四边形PDCQ或四边形APQB是平行四边形,那么QD=CQ或AP=BQ或PD=BQ,根据这个结论列出方程就可以求出时间.
试题解析:设P,Q同时出发t秒后四边形PDCQ或四边形APQB是平行四边形,根据已知得到AP=t,PD=24t,CQ=2t,BQ=302t.
(1)若四边形PDCQ是平行四边形,则PD=CQ,
∴24t=2t,
∴t=8,
∴8秒后四边形PDCQ是平行四边形;
(2)若四边形APQB是平行四边形,则AP=BQ,
∴t=302t,
∴t=10,
∴10秒后四边形APQB是平行四边形.
∴出发后8秒或10秒其中一个是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把所有正偶数从小到大排列,并按如下规律分组:
第一组:2,4;
第二组:6,8,10,12;
第三组:14,16,18,20,22,24
第四组:26,28,30,32,34,36,38,40
……
则现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A10=(2,3),则A2018=( )
A. (31,63) B. (32,17) C. (33,16) D. (34,2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数( ),2008应排在A、B、C、D、E中的( ) 位置.其中两个填空依次为( )

A. 29,C B. ﹣29,D C. 30,B D. ﹣31,E
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣
),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为( )

A.πcm2
B.
πcm2
C.
cm2
D.
cm2 -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,以此方法继续操作,即可拼成一个新的正方形DEFG.

请你参考小明的做法解决下列问题:
(1)现有5个形状,大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形,要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可).
(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE,所得□MNPQ面积为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为( )

A.3
B.2
C.2
D.2
相关试题