【题目】将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数( ),2008应排在A、B、C、D、E中的( ) 位置.其中两个填空依次为( )
![]()
A. 29,C B. ﹣29,D C. 30,B D. ﹣31,E
参考答案:
【答案】C
【解析】
观察不难发现,每个峰排列5个数,求出5个峰排列的数的个数,再求出“峰6”中D位置的数的序数,然后根据排列的特点:奇数为负数,偶数为正数解答;用(2008-1)除以5,根据商和余数的情况确定所在峰中的位置即可.
∵每个峰需要5个数,
∴5×5=25,
25+1+4=30,
∴“峰6”中D位置的数的是30,
∵(2008-1)÷5=401余2,
∴2008为“峰402”的第二个数,排在B的位置.
故答案为:30,B.
故选:C
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB. 
(1)求证:四边形AFCE是平行四边形.
(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗 ”若成立,请写出证明过程;若不成立,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把所有正偶数从小到大排列,并按如下规律分组:
第一组:2,4;
第二组:6,8,10,12;
第三组:14,16,18,20,22,24
第四组:26,28,30,32,34,36,38,40
……
则现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A10=(2,3),则A2018=( )
A. (31,63) B. (32,17) C. (33,16) D. (34,2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣
),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒时其中一个四边形为平行四边形?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为( )

A.πcm2
B.
πcm2
C.
cm2
D.
cm2
相关试题