【题目】如图,AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,连接BD,OD,则∠AOD+∠ABD的度数为( )![]()
A.100°
B.110°
C.120°
D.150°
参考答案:
【答案】D
【解析】解:∵∠CAB=40°,
∴∠BDC=40°.
∵CD⊥AB,
∴∠ABD=90°﹣40°=50°,
∴∠AOD=2∠ABD=100°,
∴∠AOD+∠ABD=100°+50°=150°.
所以答案是:D.
【考点精析】根据题目的已知条件,利用垂径定理和圆周角定理的相关知识可以得到问题的答案,需要掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),抛物线W1:y=﹣x2+4x与x轴的正半轴交于点B,顶点为A,抛物线W2与W1关于x轴对称,顶点为D.

(1)求抛物线W2的解析式;
(2)将抛物线W2向右平移m个单位,点D的对应点为D′,点B的对应点为B′,则当m为何值时,四边形AOD′B′为矩形?请直接写出m的值.
(3)在(2)的条件下,将△AOD′沿x轴的正方向向右平移n个单位(0<n<5),得到△A′O′D′′,AD′分别与O′A′、O′D′′交于点M、点P,A′D′′分别与AB′、B′D′交于点N、点Q.
①求当n为何值时,四边形MNQP为菱形?
②若四边形MNQP的面积为S,求S关于n的函数关系式;并求当n为何值时,S的值最大?最大值为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点
是坐标原点,四边形
是菱形,点
的坐标为
,点
在
轴的负半轴上,直线
交
轴于点
,
边交
轴于点
.(1)如图1,求直线
的解析式;
(2)如图2,连接
,动点
从点
出发,沿线段
方向以1个单位/秒的速度向终点
匀速运动,设
的面积为
(
),点
的运动时间为
秒,求
与
之间的函数关系式,并直接写出自变量
的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为
,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB的延长线于点F,则EF的长为( )
A.2
B.4
C.2
D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】某造纸企业为了更好地处理污水问题,决定购买10台新型污水处理设备.甲、乙两种型号的设备可选,其中每台的价格,月处理污水量如表:
A型
B型
价格(万元/)
10
8
处理污水量(吨/月)
180
150
(1)经预算:该企业购买污水处理设备的资金不超过85万元,你认为该企业有哪几种购买方案.
(2)在(1)的条件下,若每月需要处理的污水不低于1530吨,为了节约资金,请你为该企业设计一种最省钱的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形ABCD中,对角线AC、BD交于点O,点P在线段BC上(不含点B),∠BPE=
∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①):
①求证:△BOG≌△POE;②猜想:
= ;(2)当点P与点C不重合时,如图②,
的值会改变吗?试说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.
(1)求去年该农家乐餐饮和住宿的利润各为多少万元?
(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?
相关试题