【题目】某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.
(1)求出y与m之间的函数关系式;
(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
参考答案:
【答案】(1)
=﹣200
+15000(20≤m<30);(2) 购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
【解析】
(1)利润=一辆A型电动自行车的利润×A型电动自行车的数量+一辆B型电动自行车的利润×B型电动自行车的数量,依此列式化简即可;
(2)根据一次函数的性质,结合自变量的取值范围即可求解;
解:(1)计划购进A型电动自行车
辆,B型电动自行车(30-
)辆,
=(2800-2500)m+(3500﹣3000)(30﹣m),
=﹣200
+15000(20≤m<30),
(2)∵20≤
<30,且
随
的增大而减小可得,
=20时,
有最大值,
=﹣200×20+15000=11000,
购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴上有A、B两点.

⑴分别写出A、B两点表示的数 、 ;
⑵若点C表示
,请你把点C表示在如图所示的数轴上;⑶若点D与点A表示的两个数互为相反数,则点D表示的数是 ;
⑷将A、B、C、D四个点所表示的数用“>”连接起来;
⑸C、D两点之间的距离是 ;
⑹上述问题体现了 的数学思想.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,点
、
的横坐标分别为
、
,二次函数
的图像经过点
、
,且
满足
(
为常数).(1)若一次函数
的图像经过
、
两点.①当
、
时,求
的值;②若
随
的增大而减小,求
的取值范围.(2)当
且
、
时,判断直线
与
轴的位置关系,并说明理由;(3)点
、
的位置随着
的变化而变化,设点
、
运动的路线与
轴分别相交于点
、
,线段
的长度会发生变化吗?如果不变,求出
的长;如果变化,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.
(1)△DCF可以看作是△BCE绕点C旋转某个角度得到的吗?
(2)若∠CEB=60°,求∠EFD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】综合实践
问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.
操作探究:
⑴若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?

⑵如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?

⑶如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.
①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.
②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为 cm,底面积为 cm2,当小正方形边长为4cm时,纸盒的容积为 cm3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,
为坐标原点,矩形
的顶点
、
,将矩形
的一个角沿直线
折叠,使得点
落在对角线
上的点
处,折痕与
轴交于点
.(1)求线段
的长度;(2)求直线
所对应的函数表达式;(3)若点
在线段
上,在线段
上是否存在点
,使以
为顶点的四边形是平行四边形?若存在,请求出点
的坐标;若不存在,请说明理由.
相关试题