【题目】小芳去商店购买甲、乙两种商品. 现有如下信息:
信息1:甲、乙两种商品的进货单价之和是5元,按零售单价购买甲商品3件和乙商品2件,共付了19元;
信息2:甲商品零售单价比甲进货单价多1元,乙商品零售单价比乙进货单价的2倍少1元.
请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)若小芳准备用不超过400元钱购买100件甲、乙两种商品,其中甲种商品至少购买多少件?
参考答案:
【答案】(1)甲、乙两种商品的进货单价分别为2元、3元;(2)甲种商品至少购买50件.
【解析】分析:(1)根据题意中的信息,找到等量关系,设甲、乙两种商品的进货单价分别为x、y元,列出方程组即可求解;
(2)由⑴得:甲商品零售价为x+1=3(元),乙商品零售价为2y-1=35(元),根据小芳准备用不超过400元钱购买100件甲、乙两种商品,列不等式求解即可.
详解:⑴设甲、乙两种商品的进货单价分别为x、y元.
.
.
答:甲、乙两种商品的进货单价分别为2元、3元.
⑵由⑴得:甲商品零售价为x+1=3(元),乙商品零售价为2y-1=35(元).
设甲种商品购买m件.
3m+5(100-m)≤400,
m≥50
答;甲种商品至少购买50件.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了丰富学生业余生活,决定组建绘画、摄影、读书和舞蹈兴趣活动小组,为了解学生最喜欢哪一种活动的人数,随机抽取了部分学生进行调查(每位学生必选且只能选一项),并将调查结果绘制成了两幅不完整的统计图,请你根据统计图上提供的信息回答下列问题:
(1)这次被调查的学生共有多少人,并将条形统计图补充完整;
(2)在扇形统计图中,求出最喜欢“读书”所对应的圆心角度数;
(3)若该校共有学生2000人,请你估计该校最喜欢读书活动的人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.
(1)求证:BD、EF互相平分;
(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0
(1)证明:无论m为何值方程都有两个实数根;
(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,弦AD⊥BC垂足为H,∠ABC=2∠CAD.
(1)如图1,求证:AB=BC;
(2)如图2,过点B作BM⊥CD垂足为M,BM交⊙O于E,连接AE、HM,求证:AE∥HM;
(3)如图3,在(2)的条件下,连接BD交AE于N,AE与BC交于点F,若NH=2
,AD=11,求线段AB的长.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣
,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cos∠ABO=
.(1)求反比例函数的解析式;
(2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.

相关试题