【题目】已知A(0,1),B(2,0),C(4,3).
(1)在坐标系中描出各点,画出三角形ABC;
(2)求三角形ABC的面积;
(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,请直接写出点P的坐标.
![]()
参考答案:
【答案】(1) 见解析;(2)4;(3)点P的坐标为(10,0)或(-6,0)或(0,5)或(0,-3)
【解析】分析:(1)、在平面直角坐标系中描出各点,从而得出三角形;(2)、利用矩形的面积减去三个直角三角形的面积得出△ABC的面积;(3)、根据三角形的面积得出三角形的底,从而得出点的坐标.
详解:(1)三角形ABC如图所示
![]()
如图,过点C向x轴、y轴作垂线,垂足为D,E.
∴S长方形DOEC=3×4=12,S三角形BCD=
×2×3=3,
S三角形ACE=
×2×4=4,S三角形AOB=
×2×1=1,
∴S三角形ABC=S长方形DOEC-S三角形ACE-S三角形BCD-S三角形AOB=12-4-3-1=4 ,
(3)点P的坐标为(10,0)或(-6,0)或(0,5)或(0,-3)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地区为绿化环境,计划购买甲、乙两种树苗共计n棵.有关甲、乙两种树苗的信息如图所示:

(1)当n=400时,如果购买甲、乙两种树苗共用27000元,那么甲、乙两种树苗各买了多少棵?
(2)实际购买这两种树苗的总费用恰好为27000元,其中甲种树苗买了m棵.
①写出m与n满足的关系式;
②要使这批树苗的成活率不低于92%,求n的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=12厘米,(即∠B=∠C),BC=9厘米,点M为AB的中点,
(1)如果点P在线段BC上以2厘米/秒的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1.5秒后,△BPM与△CQP是否全等?请说明理由.
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPM与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.

证明:∵AD∥BC(已知)
∴∠2=∠E(___________________________)
∵AE平分∠BAD(已知)
∴∠1=∠2 (_________________________)
∴∠1=∠E(___________________________)
∵∠CFE=∠E(已知)
∴∠1=∠______(______________________)
∴AB∥CD(_________________________________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC, ∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为( )

A. 65° B. 66° C. 70° D. 78°
-
科目: 来源: 题型:
查看答案和解析>>【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)在给定方格纸中画出平移后的△A′B′C′;
利用网格点和三角板画图或计算:
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用下表来记录了两人5天的读书进程.

例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.
(1)表中空白部分从左到右2个数据依次为____,_____;
(2)小明、小红每人每天各读多少页?
相关试题