【题目】在“美丽沧州,清洁乡村”活动中,高家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费用和每月垃圾处理费用共为
元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为
元,交费时间为x个月.
(1)直接写出
、
与x的函数关系式;
(2)在同一坐标系内,画出两个函数的图像;
(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?
![]()
参考答案:
【答案】(1)
;
.(2)见解析;(3)当x>8时,方案1省钱;当x=8时,;两种方案的费用相同;当x<8时,方案2省钱.
【解析】
(1)根据交费=费用+每月处理费即可得到答案;
(2)取图象与y轴的交点,及x=4的点,两点连成图象;
(3)计算图象的交点坐标,再分三种情况给出答案.
(1)∵交费=费用+每月处理费,
∴
,
;
(2)当x=4时,
=4000,
=3000,
见图:
![]()
(3)当y1<y2时,250x+3000<500x+1000,得x>8,方案1省钱;
当
时,250x+3000=500x+1000,得x=8,两种方案费用相同;
当y1>y2时,250x+3000>500x+1000,得x<8,方案2省钱.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校
名学生参加植树活动,要求每人植
棵,活动结束后随机抽查了
名学生每人的植树量,并分为四种类型,
:
棵;
;
棵;
:
棵,
:
棵。将各类的人绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误。
回答下列问题:
(1)写出条形图中存在的错误,并说明理由.
(2)写出这
名学生每人植树量的众数、中位数.(3)在求这
名学生每人植树量的平均数.(4)估计这
名学生共植树多少棵. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣x+2与反比例函数y=
(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;
(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;
(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.
(1)填空:∠OBC= °;
(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;
(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )

A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④
其中,正确的 是( )
A.只有①②B.只有①②③C.只有③④D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DE+DF的长度为_________.

相关试题