【题目】如图,Rt△ABC中,∠ACB=90°,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②∠DCP=45°;③BP垂直平分CE;④GF+ FC =GA;其中正确的判断有______________.(填序号)


参考答案:

【答案】①②③④

【解析】①∵AP平分∠BAC,∴∠CAP=∠BAP,

∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;

②∵AP平分∠BAC,∴PAC,AB的距离相等,

∵BP平分∠CBE,∴PBC,AB的距离相等,

∴PAC,BC的距离相等,

∴CP平分∠BCD,∴∠DCP=45°;

③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一);

④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,

∴∠DCP=∠BCP,

PG∥AD,∴∠FPC=∠DCP,∴FP=FC,

∴GF+FC=GF+FP=GP=AG,

故①②③④都正确

故答案为:①②③④.

关闭