【题目】如图,将一张长方形纸板按图中虚线裁剪成
块,其中有
块是边长都为
厘米的大正方形,
块是边长都为
厘米的小正方形,
块是长为
厘米,宽为
厘米的一模一样的小长方形,且
,设图中所有裁剪线(虚线部分)长之和为
厘米.
![]()
(1)
______(试用
,
的代数式表示);
(2)若每块小长方形的面积为
平方厘米,四个正方形的面积和为
平方厘米,求
的值.
参考答案:
【答案】(1) 6m+6n (2) 42
【解析】
(1)将图形虚线长度相加即可得;
(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10厘米2,得出等式求出m+n,进一步得到图中所有裁剪线(虚线部分)长之和即可.
(1)(1)L=6m+6n,
故答案为:6m+6n;
(2)依题意得,
,
,
,
,
,
,
,
图中所有裁剪线(虚线部分)长之和为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,反比例函数y=
的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;
(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,
交
于点
,交
于点
,
平分
,若
,求
的度数.请补充完成以下求解过程:
解:∵
(___①___)
(_______②___)

__________③_______
(_______④_______)


∴___________⑤_______(______⑥_______)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA∶AB=1∶2.
(1)求∠CDB的度数;
(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.
(1)求A、B两种车型各有多少个座位;
(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.

(1)求单摆的长度;
(2)求从点A摆动到点B经过的路径长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
(1)求证:四边形CMAN是平行四边形.
(2)已知DE=2,FN=1,求BN的长.

相关试题