【题目】如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD.
(1)求∠BDA的度数;
(2)若AD=2,求BC的长.
![]()
参考答案:
【答案】(1)60°;(2)6.
【解析】
(1)由题意可得∠B=∠C=30°,由AB⊥AD,可求∠BDA的度数;
(2)根据30度所对的直角边等于斜边的一半,可求BD=4,根据三角形的外角等于不相邻的两个内角和,可求∠C=∠DAC=30°,可得AD=CD=2,即可求BC的长.
解:(1)∵AB=AC,
∴∠B=∠C=30°,
∵AD⊥AB,
∴∠BDA+∠B=90°,
∴∠BDA=60°;
(2)∵∠BDA=60°,∠C=30°,且∠BDA=∠C+∠DAC,
∴∠DAC=60°﹣30°=30°=∠C,
∴AD=CD=2,
∵AB⊥AD,∠B=30°,
∴BD=2AD=4,
∵BC=BD+CD,
∴BC=2+4=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:
(1)平移后的三个顶点坐标分别为:A1 ,B1 ,C1 ;
(2)画出平移后三角形A1B1C1;
(3)求三角形ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是( )

A.a=20
B.b=4
C.若工人甲一天获得薪金180元,则他共生产50件
D.若工人乙一天生产m(件),则他获得薪金4m元 -
科目: 来源: 题型:
查看答案和解析>>【题目】在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.
(1)求甲、乙两种车辆单独完成任务分别需要多少天?
(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,给出了下列三个论断:①对角线AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出______个正确的命题.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( )

A.3
B.
C.
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC≌△DEB,点E在AB上,DE与AC相交于点F.
(1)当DE=8,BC=5时,线段AE的长为____;
(2)若∠D=35°,∠C=60°,求∠DBC的度数.

相关试题