【题目】已知二次函数
的图象如图所示,则关于
的一元二次方程
的根为________;不等式
的解集是________;当
________时,
随
的增大而减小.
![]()
参考答案:
【答案】
或
【解析】
根据二次函数y=-x2+2x+m的图象可以得到其对称轴和与x轴一个交点,由此可以得到抛物线与x轴的另一个交点坐标,然后就可得m的值,那么解方程就能求得一元二次方程的解,可得到函数与x轴的交点,那么x轴上方的函数图象所对应的x的取值即为不等式-x2+2x+m>0的解集,对称轴的右侧,y随x的增大而减小.
解:∵对称轴为x=1,一个根为3,
∴
=1,
∴x=-1,
∴-x2+2x+m=0的根为x1=-1,x2=3,
∴不等式-x2+2x+m>0的解集是-1<x<3,
当x>1时,y随x的而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为_____

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,∠B=∠C,BD=CE,AB=DC,

①求证:△ADE为等腰三角形.
②若∠B=60°,求证:△ADE为等边三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,笔直的公路上有A、B两个站点相距40km,在公路的同侧有C、D两个村庄,DA⊥AB,CB⊥AB,且DA=20km,CB=10km,现政府决定在A、B之间建一个土特产加工基地E.
(1)若要使土特产加工基地E点到C、D两村的距离相等,请用直尺和圆规在图1中作出点E;
(2)在(1)的条件下求出基地E到A站的距离;
(3)若要使土特产加工基地E点到C、D两村的距离和(即DE +EC)最小,求出此最小的距离和.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,E为AB中点.
(1)若两个直角三角形的直角顶点在AB的异侧(如图1),连接CD,取CD中点F,连接EF、DE、CE,则DE与CE数量关系为 ,EF与CD位置关系为 ;
(2)若两个直角三角形的直角顶点在AB的同侧(如图2),连接CD、DE、CE.
①若∠CAB=25°,∠DBA=35°,判断△DEC的形状,并说明理由;
②若∠CAB+∠DBA=
,当
为多少度时,△DEC为等腰直角三角形,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.
(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE= cm;
(2)当t为多少时,△ABD的面积为12 cm2?
(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道,图形的运动只改变图形的位置,不改变图形的形状、大小,运动前后的两个图形全等,翻折就是这样.如图1,将△ABC沿AD翻折,使点C落在AB边上的点C'处,则△ADC≌△ADC'.

尝试解决:(1)如图2,△ABC中,∠C=90°,AC=6,BC=8,将△ABC沿AD翻折,使点C落在AB边上的点C'处,求CD的长.
(2)如图3,在长方形ABCD中,AB=8,AD=6,点P在边AD上,连接BP,将△ABP沿BP翻折,使点A落在点E处,PE、BE分别与CD交于点G、F,且DG=EG.
①求证:PE=DF;
②求AP的长.
相关试题