【题目】如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点P为AC边上的动点,过点P作PD⊥AB于点D,则PB+PD的最小值为_____.
![]()
参考答案:
【答案】![]()
【解析】
作点B关于AC的对称点B′,过点B′作B′D⊥AB于点D,交AC于点P,点P即为所求作的点,此时PB+PD有最小值,连接AB′,根据对称性的性质,BP=B′P,证明△ABC≌△AB′C,根据S△ABB′=S△ABC+S△AB′C=2S△ABC,即可求出PB+PD的最小值.
解:如图,作点B关于AC的对称点B′,过点B′作B′D⊥AB于点D,交AC于点P,点P即为所求作的点,此时PB+PD有最小值,连接AB′,根据对称性的性质,则BP=B′P,
![]()
在Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB=
=5,
∵AC=AC,∠ACB=∠ACB′,BC=B′C,
∴△ABC≌△AB′C(SAS),
∴S△ABB′=S△ABC+S△AB′C=2S△ABC,
即
ABB′D=2×
BCAC,
∴5B′D=24,
∴B′D=
.
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=
BF;④AE=BG.其中正确的是
A. ①② B. ①③ C. ①②③ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列解题过程
已知a、b、c为△ABC为三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状
解:∵a2c2-b2c2=a4-b4①
∴c2(a2-b2)=(a2-b2)(a2+b2)②
∴c2=a2+b2③
∴△ABC是直角三角形
回答下列问题:
(1)上述解题过程,从哪一步开始出现错误?请写出该步的序号________.
(2)错误原因为________.
(3)本题正确结论是什么,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.

(1)请补全条形统计图;
(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;
(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠BAC=90°,D,E分别在边BC,AC上,∠ADE=45°.
求证:△ABD∽△DCE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,则BE与AF的数量关系是 .
(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么上述结论还成立吗?请利用图②说明理由.

相关试题