【题目】如图,一个商人要建一个矩形的仓库,仓库的两边是住房墙,另外两边用
长的建筑材料围成,且仓库的面积为
.
求这矩形仓库的长;
有规格为
和
(单位:
)的地板砖单价分别为
元/块和
元/块,若只选其中一种地板砖都恰好能铺满仓库的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
![]()
参考答案:
【答案】(1)12cm;(2) 采用1.00×1.00规格的地板砖费用较少.
【解析】
(1)设矩形仓库的AC边长为xm,根据矩形面积公式可得关于x的方程,解方程即可求得答案;
先分别计算出两种规格地砖的费用,然后比较即可得答案.
(1)设矩形仓库的AC边长为xm,则有
x(20-x)=96,
解得:x1=12,x2=8,
当x=12时,20-x=8,
当x=8时,20-x=12,
根据矩形的特点,可知这矩形仓库的长是
;
规格为
所需的费用:
(元),
规格为
所需的费用:
元,
∵
,
∴采用
规格的地板砖费用较少.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.

(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求
的值.(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的
倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距 千米.
(2)B出发后 小时与A相遇.
(3)B走了一段路后,自行车发生故障,进行 修理,所用的时间是 小时.
(4)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米.在图中表示出这个相遇点C.
(5)求出A行走的路程S与时间t的函数关系式.(写出过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了解学生到校交通方式情况,随机抽取各年级部分学生就“上下学交通方式”进行问卷调查,调查分为“A:骑自行车;B:步行;C:坐公交车;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图①)和部分扇形统计图(如图②),请根据图中的信息,解答下列问题.
(1)本次调查共抽取 名学生;
(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
(3)若该中学共有学生3000人,估计有多少学生在上下学交通方式中选择坐公交车?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前往B地、C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的函数图象如图所示.
(1)甲车到达B地停留的时长为 小时.
(2)求甲车返回A地途中y与x之间的函数关系式.
(3)直接写出两车在途中相遇时x的值.

相关试题