【题目】如图,在△ABC,
中,D是BC的中点,DE⊥BC,CE∥AD,若
,
,求四边形ACEB的周长.
![]()
参考答案:
【答案】10+
【解析】试题分析:首先根据题意得出四边形ACED是平行四边形,则DE=AC=2,根据Rt△CDE的勾股定理求出CD的长度,然后根据Rt△ABC的勾股定理得出AB的长度,根据等腰三角形的性质得出BE的长度,从而得出四边形ACEB的周长.
试题解析:∵ ACB=90,DEBC, ∴ AC//DE,又∵ CE//AD,
∴ 四边形ACED是平行四边形, ∴ DE=AC=2,
在Rt△CDE中,由勾股定理得:CD=
=2
,
∵ D是BC的中点,∴ BC=2CD=4
,在Rt△ABC中,由勾股定理得AB=
=2
,
∵ D是BC的中点,DEBC, ∴ EB=EC=4,
∴ 四边形ACEB的周长=AC+CE+EB+BA=10+2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+2与直线l交于点A、B两点,且A点为抛物线与y轴的交点,B(﹣2,﹣4),抛物线的对称轴是直线x=2,过点A作AC⊥AB,交抛物线于点C、x轴于点D.

(1)求此抛物线的解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点K,使得以AC为边的平行四边形ACKL的面积等于△ABC的面积?若存在,请直接写出点K的横坐标;若不存在,请说明理由.[提示:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣
,顶点坐标为(﹣
,
)]. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知长方体的长、宽、高分别为30cm、20cm、10cm,一只蚂蚁从A处出发到B处觅食,求它所走的最短路径.(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:2(x2y+3xy2)﹣[﹣2(x2y+4)+xy2]﹣3xy2,其中x=2,y=﹣2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF, BC=5,CF=3,BF=4.
求证:DE∥FC

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。

A. 1个 B. 2个 C. 3个 D. 4个
相关试题