【题目】已知:如图,△ABC是等边三角形,BD⊥AC,E是BC延长线上的一点,且∠CED=30°.
(1)求证:DB=DE.
(2)在图中过D作DF⊥BE交BE于F,若CF=3,求△ABC的周长.
![]()
参考答案:
【答案】(1)证明见解析;(2)48.
【解析】
试题(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE;(2)根据直角三角形中,30°的锐角所对的直角边等于斜边的一半DC=8,AC=16,即可求得△ABC的周长.
试题解析:
(1)证明:∵△ABC是等边三角形,BD是中线,
∴∠ABC=∠ACB=60°.
∠DBC=30°(等腰三角形三线合一).
又∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED=
∠BCD=30°.
∴∠DBC=∠DEC.
∴DB=DE(等角对等边);
![]()
(2)解: ∵∠CDE=∠CED=
∠BCD=30°,
∴∠CDF=30°,
∵CF=4,
∴DC=8,
∵AD=CD,
∴AC=16,
∴△ABC的周长=3AC=48.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+2x﹣6与x轴交于点A(﹣6,0),B(点A在点B的左侧),与y轴交于点C,直线BD与抛物线交于点D,点D与点C关于该抛物线的对称轴对称.

(1)连接CD,求抛物线的表达式和线段CD的长度;
(2)在线段BD下方的抛物线上有一点P,过点P作PM∥x轴,PN∥y轴,分别交BD于点M,N.当△MPN的面积最大时,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】反比例函数的图象经过点P(﹣1,2),则此反比例函数的解析式为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
+2sin60°﹣|﹣
|﹣(﹣2015)0 . -
科目: 来源: 题型:
查看答案和解析>>【题目】某商场计划购进冰箱、彩电进行销售,已知冰箱的进货单价比彩电的进货单价多400元,若商场用80 000元购进冰箱的数量与用64 000元购进彩电的数量相等.该商场冰箱、彩电的售货单价如下表:
冰箱
彩电
售价(元/台)
2500
2000
(1)分别求出冰箱、彩电的进货单价.
(2)为了满足市场需求,商场决定用不超过90 000元的资金采购冰箱、彩电共50台。若该商场将购进的冰箱、彩电共50台全部售出,获得利润为w元,为了使商场的利润最大,该商场该如何购进冰箱、彩电,最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图,点D在线段BC的延长线上移动,若∠BAC=40
,求∠DCE的度数.(2)设∠BAC=m,∠DCE=n.
①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.
②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正确的个数有( )个.

A. 1 B. 2 C. 3 D. 4
相关试题