【题目】张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+
(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是
,矩形的周长是2(x+
);当矩形成为正方形时,就有x=
(x>0),解得x=1,这时矩形的周长2(x+
)=4最小,因此x+
(x>0)的最小值是2.模仿张华的推导,你求得式子
(x>0)的最小值是( )
A.2
B.1
C.6
D.10
参考答案:
【答案】C
【解析】解:∵x>0, ∴在原式中分母分子同除以x,
即
=x+
,
在面积是9的矩形中设矩形的一边长为x,则另一边长是
,
矩形的周长是2(x+
);
当矩形成为正方形时,就有x=
,(x>0),
解得x=3,
这时矩形的周长2(x+
)=12最小,
因此x+
(x>0)的最小值是6.
故选:C
【考点精析】利用分式的混合运算和完全平方公式对题目进行判断即可得到答案,需要熟知运算的顺序:第一级运算是加法和减法;第二级运算是乘法和除法;第三级运算是乘方.如果一个式子里含有几级运算,那么先做第三级运算,再作第二级运算,最后再做第一级运算;如果有括号先做括号里面的运算.如顺口溜:"先三后二再做一,有了括号先做里."当有多层括号时,先算括号内的运算,从里向外{[(?)]};首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为( )

A.12
B.15
C.12
D.15 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=
,CE=1.则
的长是( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,A(-1,0),B(1,0),C(0,1),点D为x轴正半轴上的一个动点,点E为第一象限内一点,且CE⊥CD,CE=CD.
(1)试说明:∠EBC=∠CAB ;
(2)取DE的中点F,连接OF,试判断OF与AC的位置关系,并说明理由;
(3)在(2)的条件下,试探索O、D、F三点能否构成等腰三角形,若能,请直接写出所有符合条件的点D的坐标;若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为( )

A.12
B.15
C.12
D.15 -
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式.例
如图1可以得到
.请解答下列问题:
(1)根据图2,完成数学等式:
= ;(2)观察图3,写出图3中所表示的等式: =____________.
(3)若
、
、
,且
,请利用(2)所得的结论求:
的值 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=
,CE=1.则
的长是( ) 
A.
B.
C.
D.
相关试题