【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,-
)三点.![]()
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(﹣1,0),B(5,0),C(0,-
)三点在抛物线上,
∴
,
解得
.
∴抛物线的解析式为:y=
x2﹣2x﹣ ![]()
(2)
解:∵抛物线的解析式为:y=
x2﹣2x﹣
,
∴其对称轴为直线x=﹣
=﹣
=2,
连接BC,如图1所示,
∵B(5,0),C(0,﹣
),
∴设直线BC的解析式为y=kx+b(k≠0),
∴
,
解得
,
∴直线BC的解析式为y=
x﹣
,
当x=2时,y=1﹣
=﹣
,
∴P(2,﹣
)
![]()
(3)
解:存在.
如图2所示,
![]()
①当点N在x轴下方时,
∵抛物线的对称轴为直线x=2,C(0,﹣
),
∴N1(4,﹣
);
②当点N在x轴上方时,
如图,过点N2作N2D⊥x轴于点D,
在△AN2D与△M2CO中,
![]()
∴△AN2D≌△M2CO(ASA),
∴N2D=OC=
,即N2点的纵坐标为
.
∴
x2﹣2x﹣
=
,
解得x=2+
或x=2﹣
,
∴N2(2+
,
),N3(2﹣
,
).
综上所述,符合条件的点N的坐标为(4,﹣
),(2+
,
)或(2﹣
,
).
【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,-
)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是△ABC的中线,tanB=
,cosC=
,AC=
.求: 
(1)BC的长;
(2)sin∠ADC的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整.
证明:∵AD⊥BC,EF⊥BC( ),
∴∠EFB=∠ADB=90°(垂直的定义)
∴EF∥ ( )
∴∠1= ( )
又∵∠1=∠2(已知)
∴ ( )
∴DG∥AB( )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.

(1)求证:DE与⊙O相切.
(2)若tanC=
,DE=2,求AD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在一个钝角三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“智慧三角形”.如,三个内角分别为120°,40°,20°的三角形是“智慧三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交射线OB于点C.
(1)∠ABO的度数为_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求证:△AOC为“智慧三角形”;
(3)当△ABC为“智慧三角形”时,求∠OAC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E
(1)填空:①如图1,若∠B=60°,则∠E= ;
②如图2,若∠B=90°,则∠E= ;
(2)如图3,若∠B=α,求∠E的度数;
(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:

(习题回顾)已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;
(变式思考)如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;
(探究廷伸)如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.
相关试题