【题目】如图,在边长为 2 的正方形 ABCD 中,点 P 、Q 分别是边 AB 、 BC 上的两个动点(与点 A 、B 、C 不重合)且始终保持 BP BQ, AQ QE ,QE 交正方形外角平分线CE 于点 E , AE 交CD 于点 F ,连结 PQ 。
![]()
(1)求证: APQ ≌ QCE ;
(2)求QAE 的度数;
(3)设 BQ x ,当 x 为何值时, QF CE ,并求出此时AQF 的面积。
参考答案:
【答案】(1)见解析;(2)45°;(3) 2
-2;4
-4.
【解析】
(1)判断出△PBQ是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE,再求出AP=CQ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ,判断出△AQE是等腰直角三角形,再根据等腰直角三角形的性质解答; (3)把△ABQ绕点A逆时针旋转90°得到△ADG,求出∠GAF=45°,从而得到∠GAF=∠QAF,再利用“边角边”证明△AQF和△AGF全等,根据全等三角形对应边相等可得QF=GF,再根据两直线平行,同位角相等求出∠CQF=45°,然求出CQ=CF,分别用x表示出CQ、CF、QF,利用勾股定理列式表示出QF,然后列出方程求出x,再求出△AGF的面积,即为△AQF的面积.
(1)证明:在正方形ABCD中,∠B=90°,AB=BC,∵BP=BQ,
∴△PBQ是等腰直角三角形,AP=CQ,
∴∠BPQ=45°,
∵CE为正方形外角的平分线,
∴∠APQ=∠QCE=135°,
∵AQ⊥QE,
∴∠CQE+∠AQB=90°,
又∵∠PAQ+∠AQB=90°,
∴∠PAQ=∠CQE,
在△APQ和△QCE中,
,
∴△APQ≌△QCE(ASA);
(2)解:∵△APQ≌△QCE,
∴AQ=EQ,
∵AQ⊥QE,
∴△AQE是等腰直角三角形,
∴∠QAE=45°;
(3)解:如图,把△ABQ绕点A逆时针旋转90°得到△ADG,
![]()
则AQ=AG,BQ=DG,∠BAQ==∠DAG,
∵∠QAE=45°,
∴∠GAF=45°,∠GAF=∠QAF,
在△AQF和△AGF中,
,
∴△AQF≌△AGF(SAS),
∴QF=GF,
∵QF∥CE,
∴∠CQF=45°,
∴△CQF是等腰直角三角形,
∴CQ=CF,
∵BQ=x,
∴CQ=CF=2-x,
∴DF=2-(2-x)=x,
∴QF=GF=2x,
在Rt△CQF中,CQ2+CF2=QF2, 即(2-x)2+(2-x)2=(2x)2,
解得x=2
-2,
∴△AGF的面积=
×2(2
-2)×2=4
-4, 即△AQF的面积为4
-4.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=
CE;④EF的垂直平分线是直线AC.正确结论个数有( )个.
A. 1B. 2C. 3D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在长方形ABCD中,AB=10 cm,BC=8 cm,点P从A出发,沿A、B、C、D路线运动,到D停止,点P的速度为每秒1 cm,a秒时点P的速度变为每秒bcm,图②是点P出发x秒后,△APD的面积S1(cm2)与y(秒)的函数关系图象:

(1)根据图②中提供的信息,a= ,b= ,c= .
(2)点P出发后几秒,△APD的面积S1是长方形ABCD面积的四分之一?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等腰直角三角形,∠BAC=90°,其中A(-2,0),B(0,1),则直线BC的函数表达式为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形 ABCD 中,B 60 ,M 、N 分别为线段 AB 、BC 上的两点,且 BM CN , AN 、CM 相交于点 E 。

(1)证明: BCM ≌ CAN 。
(2)求AEM 的度数。
(3)证明: AE CE DE 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,

(1)求证:CD是⊙O的切线.
(2)若⊙O的半径为3,AE=5,求∠DAE的正弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在平面直角坐标系中,直线l:
与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形
,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点
的坐标是_______________________.
相关试题