【题目】如图,已知抛物线y=﹣
x2﹣
x+2与x轴交于A、B两点,与y轴交于点C![]()
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:令y=0得﹣
x2﹣
x+2=0,
∴x2+2x﹣8=0,
x=﹣4或2,
∴点A坐标(2,0),点B坐标(﹣4,0),
令x=0,得y=2,∴点C坐标(0,2)
(2)
解:由图像①AB为平行四边形的边时,
∵AB=EF=6,对称轴x=﹣1,
∴点E的横坐标为﹣7或5,
∴点E坐标(﹣7,﹣
)或(5,﹣
),此时点F(﹣1,﹣
),
∴以A,B,E,F为顶点的平行四边形的面积=6×
=
.
②当点E在抛物线顶点时,点E(﹣1,
),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=
×6×
= ![]()
(3)
解:如图所示,
![]()
①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,
在RT△CM1N中,CN=
=
,
∴点M1坐标(﹣1,2+
),点M2坐标(﹣1,2﹣
).
②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,
线段AC的垂直平分线为y=x,
∴点M3坐标为(﹣1,﹣1).
③当点A为等腰三角形的顶角的顶点的三角形不存在.
综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+
)或(﹣1,2﹣
).
【解析】(1)分别令y=0,x=0,即可解决问题.(2)由图像可知AB只能为平行四边形的边,分E点为抛物线上的普通点和顶点2种情况讨论,即可求出平行四边形的面积.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】杭州某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据以上信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若杭州市约有900万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率为 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( ).

A. OA=OC,OB=OD B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC D. AB=CD,AO=CO
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图像与反比例函数y=
的图像交于点A﹙﹣2,﹣5﹚C﹙5,n﹚,交y轴于点B,交x轴于点D. 
(1)求反比例函数y=
和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.、 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l和双曲线
(k>0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1 , △BOD面积是S2 , △POE面积是S3 , 则( ) 
A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省( )元.

A. 4 B. 5 C. 6 D. 7
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

相关试题