【题目】若二次函数y=-2x2+bx+c的顶点坐标为(2,-3),则此函数有( )
A.最大值2
B.最大值-3
C.最小值2
D.最小值-3
参考答案:
【答案】B
【解析】解:∵二次函数y=-2x2+bx+c中,a=-2<0,
∴抛物线开口向下,有最大值.
又∵顶点坐标为(2,-3),
∴最大值是-3.
故选B.
【考点精析】通过灵活运用二次函数的最值,掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中
(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;
(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,
①BC与CF的位置关系是: ;
②BC、CD、CF之间的数量关系为: (将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列方程中,关于x的一元二次方程的是( )
A.x-2=0
B.x+y=3
C.x2+xy=0
D.x2=9-2x -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.
(1)若AC=6,BC=10,求⊙O的半径.
(2)过点E作弦EF⊥AB于M,连接AF,若∠AFE=2∠ABC,求证:四边形ACEF是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在平面直角坐标系xOy中,反比例函数y1=
(x>0)的图象与一次函数y2=kx-k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)观察图像,直接写出使y1≥y2的x的取值范围.
(3)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.
相关试题