【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
![]()
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移
个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
参考答案:
【答案】(1)![]()
(2)﹣1<x<0或x>1。
(3)首先求出OA的长度,结合题意CB∥OA且CB=
,判断出四边形OABC是平行四边形,再证明OA=OC。
【解析】
(1)设反比例函数的解析式为
(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式。
(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)首先求出OA的长度,结合题意CB∥OA且CB=
,判断出四边形OABC是平行四边形,再证明OA=OC
解:(1)设反比例函数的解析式为
(k>0)
∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。∴A(﹣1,﹣2)。
又∵点A在
上,∴
,解得k=2。,
∴反比例函数的解析式为
。
(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1。
(3)四边形OABC是菱形。证明如下:
∵A(﹣1,﹣2),∴
。
由题意知:CB∥OA且CB=
,∴CB=OA。
∴四边形OABC是平行四边形。
∵C(2,n)在
上,∴
。∴C(2,1)。
∴
。∴OC=OA。
∴平行四边形OABC是菱形。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图

(1)①在扇形图中,C部门所对应的圆心角的度数为
②在统计表中,b= ,c=
(2)求这个公司平均每人所创年利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】当下药品价格过高已成为一大社会问题,为整顿药品市场、降低药品价格,有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:
(1)甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么甲、乙两种药品每盒的零售价格分别是多少元?
(2)实施价格管制后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的
价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15% ,对乙种药品每盒加
价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院
准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,要求销售这批药
品的总利润不低于900元.请问如何搭配才能使医院获利最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.
(1)求证:E为AC中点;
(2)求证:AD=CD;
(3)若AB=10,cos∠ABC=
,求tan∠DBC的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,AD=9cm,CD=
cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)
(1)求BC边上高AE的长度;
(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;
(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】同学们都知道
表示5与(-2)之差的绝对值,也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1) 求
= ;(2) 使得
=3成立的数是 ;(3) 由以上探索猜想,对于任何有理数x,则
最小值是 ;(4)由以上探索猜想,使得
的成立的整数x是 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=
的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;
(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;
(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)

相关试题