【题目】如图,方格纸中每个小正方形的边长均为1,建立如图所示的直角坐标系,已知两点A(0,2),B(4,1)
![]()
(1)请在x轴上画出一点P,使得PA+PB的值最小;
(2)请直接写出:点P的坐标 ;PA+PB的最小值为 .
参考答案:
【答案】(1)详见解析;(2)P点坐标为(
,0),PA+PB的最小值为5.
【解析】
(1)作A点关于x轴的对称点A′,连结BA′交x轴于P点,利用对称的性质得到PA=PA′,则PA+PB=PA′+PB=BA′,于是利用两点之间线段最短可判断P点满足条件;
(2)先写出点A′的坐标为(0,﹣2),再利用待定系数法求出直线BA′的解析式为y=
x﹣2,然后解方程
x﹣2=0得P点坐标,然后利用两点间的距离公式求出BA′即可.
解:(1)如图,点P为所作;
![]()
(2)A点关于x轴对称的点A′的坐标为(0,﹣2),
设直线BA′的解析式为y=kx+b,
把A′(0,﹣2),B(4,1)得
,解得,![]()
∴直线BA′的解析式为y=
x﹣2,
当y=0时,
x﹣2=0,解得x=
,
∴P点坐标为(
,0),
PA+PB的最小值=
,
故答案为:(
,0),5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的方程rx2+(r+2)x+r﹣1=0有根只有整数根的一切有理数r的值有( )个.
A. 1 B. 2 C. 3 D. 不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.将Rt△ABC绕点O依次旋转90°、180°和270°,构成的图形如图所示.该图是我国古代数学家赵爽制作的“勾股圆方图”,也被称作“赵爽弦图”,它是我国最早对勾股定理证明的记载,也成为了2002年在北京召开的国际数学家大会的会标设计的主要依据.

(1)请利用这个图形证明勾股定理;
(2)请利用这个图形说明a2+b2≥2ab,并说明等号成立的条件;
(3)请根据(2)的结论解决下面的问题:长为x,宽为y的长方形,其周长为8,求当x,y取何值时,该长方形的面积最大?最大面积是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,5) 、A1(2,5) 、A2(4,5) 、A3(8,5) 、B(2,0) 、B1(4,0) 、B2(8,0) 、B3(16,0):若按此规律,将△OAB进行n次变换,得到△OAnBn。推测An的坐标是___________,Bn的坐标是___________。( )

A. (2n,5)(2n+1,0) B. (2n-1,5)(2n+1,0) C. (2n,5)(2n,0) D. (2n+1,5)(2n+1,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A处,若AO=OB=2,则阴影部分面积为( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,根据要求回答下列问题:
(1)点A关于y轴对称点A′的坐标是 ;点B关于y轴对称点B′的坐标是
(2)作出△ABC关于y轴对称的图形△A′B′C′(不要求写作法)
(3)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知动点A在函数y=
(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于___.
相关试题