【题目】将一副直角三角板按如图1 摆放在直线AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不动,将三角板MON 绕点O 以每秒8°的速度顺时针方向旋转t 秒.
(1)如图2,当t= 秒时,OM 平分∠AOC,此时∠NOC﹣∠AOM= ;
(2)继续旋转三角板MON,如图3,使得OM、ON 同时在直线OC 的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由(数量关系中不能含t);
(3)直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2°的速度顺时针旋转,当OM 旋转至射线OD 上时,两个三角板同时停止运动.
①当t= 秒时,∠MOC=15°;
②请直接写出在旋转过程中,∠NOC 与∠AOM 的数量关系(数量关系中不能含t).
![]()
参考答案:
【答案】(1) t=2.8125,45;(2)∠NOC﹣∠AOM=45°;(3)①5或10;②
∠NOC﹣
∠AOM=15°.
【解析】
(1)根据角平分线的定义得到∠AOM=
∠AOC=22.5°,于是得到t=2.8125,由于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;
(2)根据题意得∠AON=90°+8t,求得∠NOC=90°+8t﹣45°=45°+8t,即可得到结论;
(3)①根据题意得∠AOB=2t,∠AOM=8t,求得∠AOC=45°+2t,列方程即可得到结论;
②根据角的和差即可得到结论.
(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM=
∠AOC=22.5°,∴t=2.8125.
∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;
(2)∠NOC﹣∠AOM=45°.
∵∠AON=90°+8t,∴∠NOC=90°+8t﹣45°=45°+8t.
∵∠AOM=8t,∴∠NOC﹣∠AOM=45°;
(3)①∵∠AOB=2t,∠AOM=8t,∴∠AOC=45°+2t,∴45°+2t﹣8t=15°或8t﹣45°﹣2t=15°.
解得:t=5或10.
②
∠NOC﹣
∠AOM=15°.
∵∠AOB=2t,∠AOM=8t,∠MON=90°,∠BOC=45°.
∵∠AON=90°+∠AOM=90°+8t,∠AOC=∠AOB+∠BOC=45°+2t,∴∠NOC=∠AON﹣∠AOC=90°+8t﹣45°﹣2t=45°+6t,∴
∠NOC﹣
∠AOM=15°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.

(1)求证:PA是⊙O的切线;
(2)若AF=3,BC=8,求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】小明身高为1.6米,通过地面上的一块平面镜C,刚好能看到前方大树的树梢E,此时他测得俯角为45度,然后他直接抬头观察树梢E,测得仰角为30度.求树的高度.(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市自来水公司为了鼓励市民节约用水,采取分段收费标准. 若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,
(1)分别写出x≤5和x>5的函数解析式;
(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;
(3)若某户居民六月交水费31元,则用水多少吨?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚与小亮一起玩一种转盘游戏,图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示.固定指针,同时转动两个转盘,任其自由停止.

(1)用树状图或者列表法表示所有可能的结果;
(2)求两指针指的数字之和等于4的概率;
(3)若两指针指的数字都是奇数,则小刚获胜;否则,小亮获胜.游戏公平吗?为什么? -
科目: 来源: 题型:
查看答案和解析>>【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
相关试题