【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=
AD,E为AD的中点,异面直线AP与CD所成的角为90°. ![]()
(Ⅰ)证明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求二面角A﹣PE﹣C的余弦值.
参考答案:
【答案】解:(Ⅰ)证明:如图, ![]()
∵AD∥BC,AD=2BC,∴四边形ABCD为梯形,则AB与DC相交.
∵∠PAB=90°,∴PA⊥AB,
又异面直线AP与CD所成的角为90°,∴PA⊥CD.
∴PA⊥平面ABCD,则PA⊥BE.
∵AD∥BC,BC=
,
∴四边形BCDE为平行四边形,则BE∥CD.
∵∠ADC=90°,∴CD⊥AD,
∴BE⊥AD.
由BE⊥PA,BE⊥AD,PA∩AD=A,得BE⊥平面PAD,
∴BE⊥PE,则△PBE是直角三角形;
(Ⅱ)解:由(Ⅰ)知,CD⊥平面PAD,则∠PDA为二面角P﹣CD﹣A的平面角为45°,
设BC=1,则AD=PA=2.
在平面ABCD中,过A作Ay⊥AD.
以A为原点,分别以AD、Ay、AP所在直线为x、y、z轴建立空间直角坐标系.
则E(1,0,0),P(0,0,2),C(2,1,0).
.
设平面PEC的一个法向量为
.
由
,得
,取z=1,得
.
由图可知,平面PAE的一个法向量为
.
∴cos<
>=
.
∴二面角A﹣PE﹣C的余弦值为
.
【解析】(Ⅰ)由已知证明PA⊥平面ABCD,得PA⊥BE.再由已知证明四边形BCDE为平行四边形,得BE∥CD.结合CD⊥AD,得BE⊥AD.再由线面垂直的判定得BE⊥平面PAD,进一步得到BE⊥PE,得到△PBE是直角三角形;(Ⅱ)由(Ⅰ)知,CD⊥平面PAD,则∠PDA为二面角P﹣CD﹣A的平面角为45°,设BC=1,得AD=PA=2.在平面ABCD中,过A作Ay⊥AD.以A为原点,分别以AD、Ay、AP所在直线为x、y、z轴建立空间直角坐标系.求得E,P,C的坐标,求出平面PEC与平面PAE的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PE﹣C的余弦值.
【考点精析】关于本题考查的平面与平面垂直的性质,需要了解两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数列{an}与{bn}满足an=2bn+3(n∈N*),若{bn}的前n项和为Sn=
(3n﹣1)且λan>bn+36(n﹣3)+3λ对一切n∈N*恒成立,则实数λ的取值范围是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】小强很喜欢操作探究问题,他把一条边长为8cm的线段AB放在直角坐标系中,使点A在y轴的正半轴上,点B在x轴的正半轴上,点P为线段AB的中点.在平面直角坐标系中进行操作探究:当点B从点O出发沿x轴正方向移动,同时顶点A随之从y正半轴上一点移动到点O为止.小强发现了两个正确的结论:
(1)点P到原点的距离始终是一个常数,则这个常数是_____cm;
(2)在B点移动的过程中,点P也随之移动,则点P移动的总路径长为_____cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】设△ABC的内角A、B、C的对边长分别为a、b、c.设S为△ABC的面积,满足S=
(a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b=
,求(
﹣1)a+2c的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】随着社会发展,广州市在一天的上下班时段经常会出现堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别;T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10)严重拥堵.早高峰时段(T≥3),从广州市交通指挥中心随机选取了50个交通路段进行调查,依据交通指数数据绘制的直方图如图所示:

(1)据此直方图,估算交通指数T∈[3,9)时的中位数和平均数;
(2)据此直方图,求市区早高峰马路之间的3个路段至少有2个严重拥堵的概率;
(3)某人上班路上所用时间,若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟;中度拥堵为45分钟;严重拥堵为60分钟,求此人上班所用时间的数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆E:(x+
)2+y2=16,点F(
,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(Ⅰ)求动点Q的轨迹E的方程; (Ⅱ)直线l过点(1,1),且与轨迹Γ交于A,B两点,点M满足
=
,点O为坐标原点,延长线段OM与轨迹Γ交于点R,四边形OARB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=ax2﹣(2a﹣1)x﹣lnx(a为常数,a≠0). (Ⅰ)当a<0时,求函数f(x)在区间[1,2]上的最大值;
(Ⅱ)记函数f(x)图象为曲线C,设点A(x1 , y1),B(x2 , y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.判断曲线C在点N处的切线是否平行于直线AB?并说明理由.
相关试题