【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进机器人多少个?
(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?
参考答案:
【答案】
(1)解:设该商家第一次购进机器人x个,
依题意得:
+10=
,
解得x=100.
经检验x=100是所列方程的解,且符合题意.
答:该商家第一次购进机器人100个
(2)解:设每个机器人的标价是a元.
则依题意得:(100+200)a﹣11000﹣24000≥(11000+24000)×20%,
解得a≥1190.
答:每个机器人的标价至少是1190元
【解析】(1)设该商家第一次购进机器人x个,根据“第一次用11000元购进某款拼装机器人,用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元”列出方程并解答;(2)设每个机器人的标价是a元.根据“全部销售完毕的利润率不低于20%”列出不等式并解答.本题考查了分式方程和一元一次不等式的应用.解答分式方程时,一定要注意验根.
【考点精析】掌握分式方程的应用是解答本题的根本,需要知道列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC=a,BC=b,DE垂直平分AB,则(1)△BEC的周长为_____;(2)若EF=BF,BE⊥AC于E,则∠EFC=______°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(已知反比例函数y=
与一次函数y=x+2的图象交于点A(﹣3,m)
(1)求反比例函数的解析式;
(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.

(1)求证:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF , 求BE. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径

(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB=
,AE=4,求CD. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q

(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)
(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;
(3)设AM=x,d为点M到直线PQ的距离,y=d2 ,
①求y关于x的函数解析式,并指出x的取值范围;
②当直线PQ恰好通过点D时,求点M到直线PQ的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为____________°

相关试题