【题目】如图,抛物线y=ax2+bx+2与坐标轴交于A、B、C三点,其中B(4,0)、C(﹣2,0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DE⊥x轴,垂足为E,交AB于点F.![]()
(1)求此抛物线的解析式;
(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当⊙G与其中一条坐标轴相切时,求G点的横坐标;
(3)过D点作直线DH∥AC交AB于H,当△DHF的面积最大时,在抛物线和直线AB上分别取M、N两点,并使D、H、M、N四点组成平行四边形,请你直接写出符合要求的M、N两点的横坐标.
参考答案:
【答案】
(1)
【解答】解:∵B,C两点在抛物线y=ax2+bx+2上,
∴
,
解得:
.
∴所求的抛物线为:y=
.
(2)
抛物线y=
,则点A的坐标为(0,2),
设直线AB的解析式为y=kx+b,
∴
,
解得:
.
∴直线AB的解析式为y=
x+2,
设F点的坐标为(x,
x+2),则D点的坐标为(x,
),
∵G点与D点关于F点对称,
∴G点的坐标为(x,
),
若以G为圆心,GD为半径作圆,使得⊙G与其中一条坐标轴相切,
①若⊙G与x轴相切则必须由DG=GE,
即
,
解得:x=
,x=4(舍去);
②若⊙G与y轴相切则必须由DG=OE,
即![]()
解得:x=2,x=0(舍去).
综上,以G为圆心,GD为半径作圆,当⊙G与其中一条坐标轴相切时,G点的横坐标为2或
.
(3)
M点的横坐标为2±
,N点的横坐标为
±
.
【解析】(1)根据B,C两点在抛物线y=ax2+bx+2上,代入抛物线得到方程组,求出a,b的值,即可解答;
(2)先求出直线AB的解析式为y=﹣
x+2,设F点的坐标为(x,-
x+2),则D点的坐标为(x,
),根据G点与D点关于F点对称,所以G点的坐标为(x,
),若以G为圆心,GD为半径作圆,使得⊙G与其中一条坐标轴相切,分两种情况解答:①若⊙G与x轴相切则必须由DG=GE;②若⊙G与y轴相切则必须由DG=OE;
(3)M点的横坐标为2±2
,N点的横坐标为
±2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某景区有一出索道游览山谷的旅游点,已知索道两端距离AB为1300米,在山脚C点测得BC的距离为500米,∠ACB=90°,在C点观测山峰顶点A的仰角∠ACD=23.5°,求山峰顶点A到C点的水平面高度AD.(参考数据:sin23.5°≈0.40,cos23.5°=0.92,tan23.5°=0.43)

-
科目: 来源: 题型:
查看答案和解析>>【题目】梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包.
(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式.
(3)在2中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.

(1)求证:HF=AP;
(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于函数y=
,下列说法错误的是( )
A.这个函数的图象位于第一、第三象限
B.这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左侧),点C是此抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点C在反比例函数
(k≠0)的图象上,求反比例函数的解析式.
相关试题