【题目】如果一个实际问题的函数图象的形状与y=
的形状相同,且顶点坐标是(4,-2),那么它的函数解析式为( ).
A.y= ![]()
B.y=
或y=
C.y= ![]()
D.y=
或y= ![]()
参考答案:
【答案】B
【解析】设函数的解析式为y=a(x—h)+k, 因为函数图象的形状与y=— ![]()
的形状相同,所以a为
或是—
,然后把顶点坐标(4,—2)代入解析式,即可得到答案.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了支援灾区学校灾后重建,我校决定再次向灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆,将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床
架10个和课桌凳10套.
(1)学校安排甲、乙两种货车可一次性把这些物资运到灾区有哪几种方案?
(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费
最少?最少运费是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】操作与探究 探索:在如图1至图3中,△ABC的面积为a .
(1)如图1, 延长△ABC的边BC到点D,使CD=BC,连结DA.若△ACD的面积为S1,则S1=________(用含a的代数式表示);




(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE.若△DEC的面积为S2,则S2= (用含a的代数式表示);
(3)在图2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=__________(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的_____倍.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育》的通知,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A—了解很多”,“B—了解较多”,“C—了解较少”,“D—不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制成以下两幅统计图.

根据以上信息,解答下列问题:
(1)本次抽样调查了多少名学生?
(2)补全两幅统计图;
(3)若该中学共有1 800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列方程: ①
; ②
; ③x2-y2=4;④5(x+y)=7(x+y);⑤2x2=3;⑥
.其中是二元一次方程的是______(填序号). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200m、120m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3xm、2xm.

(1)用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的
时,求横、纵通道的宽分别是多少?
(2)如果花坛绿化造价为每平方米3元,通道总造价为3168x元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.(以下数据可供参考:852=7225,862=7396,872=7569) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.

(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
相关试题