【题目】如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.![]()
(1)当t=
秒时,则OP= , S△ABP=;
(2)当△ABP是直角三角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQBP=3.
参考答案:
【答案】
(1)1;![]()
(2)
解:当△ABP是直角三角形时,
①若∠A=90°.
∵∠BOC=60°且∠BOC>∠A,
∴∠A≠90°,故此种情形不存在;
②若∠B=90°,如答图2所示:
![]()
∵∠BOC=60°,
∴∠BPO=30°,
∴OP=2OB=2,又OP=2t,
∴t=1;
③若∠APB=90°,如答图3所示:
![]()
过点P作PD⊥AB于点D,则OD=OPsin30°=t,PD=OPsin60°=
t,
∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.
在Rt△ABP中,由勾股定理得:PA2+PB2=AB2
∴(AD2+PD2)+(BD2+PD2)=AB2,
即[(2+t)2+(
t)2]+[(1﹣t)2+(
t)2]=32
解方程得:t=
或t=
(负值舍去),
∴t=
.
综上所述,当△ABP是直角三角形时,t=1或t= ![]()
(3)
证明:如答图4,过点O作OE∥AP,交PB于点E,
![]()
则有
,
∴PE=
PB.
∵AP=AB,
∴∠APB=∠B,
∵OE∥AP,
∴∠OEB=∠APB,
∴∠OEB=∠B,
∴OE=OB=1,∠3+∠B=180°.
∵AQ∥PB,
∴∠OAQ+∠B=180°,
∴∠OAQ=∠3;
∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,
∴∠1=∠2;
∴△OAQ∽△PEO,
∴
,即
,
化简得:AQPB=3
【解析】(1)解:当t=
秒时,OP=2t=2×
=1.
如答图1,过点P作PD⊥AB于点D.![]()
在Rt△POD中,PD=OPsin60°=1×
=
,
∴S△ABP=
ABPD=
×(2+1)×
=
.
(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()

A.
秒 B. 16秒 C.
秒 D. 24秒 -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为( )
A. 20° B. 20°或30° C. 30°或40° D. 20°或40°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=________cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1) (2
-3
)÷
; (2) (
-
)2+2
×
;(3)
; (4) (
-2
)×
-4
;(5)(
-1)(
+1)-(-
)-2+|1-
|-(π-2)0+
;(6)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于点Q。
(1)求证:OP=OQ;
(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向点D运动(不与点D重合),设点P运动时间为t秒,请用t表示PD的长;并求当t为何值时,四边形PBQD是菱形。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.
(1)求点A,B,D的坐标;
(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;
(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.
相关试题