【题目】如图,AB是⊙O的直径,弦EF⊥AB于点C,过点F作⊙O的切线交AB的延长线于点D.
(1)已知∠A=α,求∠D的大小(用含α的式子表示);
(2)取BE的中点M,连接MF,请补全图形;若∠A=30°,MF=
,求⊙O的半径.
![]()
参考答案:
【答案】(1)∠D=90°﹣2α;(2)⊙O的半径为2.
【解析】
(1)连接OE,OF,如图,利用等腰三角形的性质得到∠DOF=∠DOE.而∠DOE=2∠A,所以∠DOF=2α,再根据切线的性质得∠OFD=90°.从而得到∠D=90°﹣2α;
(2)连接OM,如图,利用圆周角定理得到∠AEB=90°.再证明OM∥AE得到∠MOB=∠A=30°.而∠DOF=2∠A=60°,所以∠MOF=90°,设⊙O的半径为r,利用含30度的直角三角形三边的关系得OM=
BM=
r,然后根据勾股定理得到即(
r)2+r2=(
)2,再解方程即可得到⊙O的半径.
解:(1)连接OE,OF,如图,
∵EF⊥AB,AB是⊙O的直径,
∴∠DOF=∠DOE.
∵∠DOE=2∠A,∠A=α,
∴∠DOF=2α,
∵FD为⊙O的切线,
∴OF⊥FD.
∴∠OFD=90°.
∴∠D+∠DOF=90°,
∴∠D=90°﹣2α;
(2)连接OM,如图,
∵AB为⊙O的直径,
∴O为AB中点,∠AEB=90°.
∵M为BE的中点,
∴OM∥AE,
∵∠A=30°,
∴∠MOB=∠A=30°.
∵∠DOF=2∠A=60°,
∴∠MOF=90°,
设⊙O的半径为r,
在Rt△OMB中,BM=
OB=
r,
OM=
BM=
r,
在Rt△OMF中,OM2+OF2=MF2.
即(
r)2+r2=(
)2,解得r=2,
即⊙O的半径为2.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】容器中有A,B,C 3种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗B粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子.例如,一颗A粒子和一颗B粒子发生碰撞则变成一颗C粒子.现有A粒子10颗,B粒子8颗,C粒子9颗,如果经过各种两两碰撞后,只剩1颗粒子.给出下列结论:
①最后一颗粒子可能是A粒子
②最后一颗粒子一定是C粒子
③最后一颗粒子一定不是B粒子
④以上都不正确
其中正确结论的序号是( ).(写出所有正确结论的序号)
A.①B.②③C.③D.①③
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平行四边形ABCD中,对角线AC,BD交于点O,E是边AD上的一个动点(与点A,D不重合),连接EO并延长,交BC于点F,连接BE,DF.下列说法:
① 对于任意的点E,四边形BEDF都是平行四边形;
② 当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;
③ 当AB<AD时,至少存在一个点E,使得是四边形BEDF是菱形;
④ 当∠ADB=45°时,至少存在一个点E,使得是四边形BEDF是正方形.
所有正确说法的序号是:_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接EF并延长,交CB的延长线于点G,连接BD.

(1) 求证:四边形EGBD是平行四边形;
(2) 连接AG,若∠FGB=
,GB=AE=3,求AG的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,函数
(x>0)的图象与直线l1:
交于点A,与直线l2:x=k交于点B.直线l1与l2交于点C.
(1) 当点A的横坐标为1时,则此时k的值为 _______;
(2) 横、纵坐标都是整数的点叫做整点. 记函数
(x>0) 的图像在点A、B之间的部分与线段AC,BC围成的区域(不含边界)为W.①当k=3时,结合函数图像,则区域W内的整点个数是_________;
②若区域W内恰有1个整点,结合函数图象,直接写出k的取值范围:___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线M:y=-x2+2bx+c与直线l:y=9x+14交于点A,其中点A的横坐标为-2.

(1)请用含有b的代数式表示c: ;
(2)若点B在直线l上,且B的横坐标为-1,点C的坐标为(b,5).
①若抛物线M还过点B,直接写出该抛物线的解析式;
②若抛物线M与线段BC恰有一个交点,结合函数图象,直接写出b的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AD>AB,连接AC,将线段AC绕点A顺时针旋转90得到线段AE,平移线段AE得到线段DF(点A与点D对应,点E与点F对应),连接BF,分别交直线AD,AC于点G,M,连接EF.

(1) 依题意补全图形;
(2) 求证:EG⊥AD;
(3) 连接EC,交BF于点N,若AB=2,BC=4,设MB=a,NF=b,试比较
与
之间的大小关系,并证明.
相关试题