【题目】如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC的延长线于点F.
(1)求证:CF =AD;
(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)BC为6时,点B在线段AF的垂直平分线上;
【解析】
(1)通过求证△FEC≌△AED来证明CF=AD;
(2)若点B在线段AF的垂直平分线上,则应有AB=BF∵AB=8,CF=AD=2,∴BC=BF-CF=8-2=6时有AB=BF.
(1)证明:∵E是CD的中点
∴DE=CE
∵AD∥BC
∴∠D=∠ECF,∠DAE=∠EFC
∴△ADE≌△FCE
∴CF=DA
(2)BC=6;
理由如下:连接BE
∵BE垂直平分AF
∴AB=BF
由(1)得AD=CF
∵AD=2,AB=8
∴BC=BF-CF
=AB-AD
=8-2
=6
∴当BC为6时,点B在线段AF的垂直平分线上
-
科目: 来源: 题型:
查看答案和解析>>【题目】全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米(参考数据:tan78°12′≈4.8).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
为
上的一点,按下列要求进行作图.(1)作
的平分线
.(2)在
上取一点
,使得
.(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边
上取一点
,使得
,这时他发现
与
之间存在一定的数量关系,请写出
与
的数量关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AC的垂直平分线分别交BC、AC于点D、E.
(1)若AC=12,BC=15,求△ABD的周长;
(2)若∠B=20°,求∠BAD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)观察推理:如图①,在△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l的同侧,,垂足分别为.求证:△AEC≌△CDB.
(2)类比探究:如图②,在Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB,,连接CB,,求△ACB,的面积.
(3)拓展提升:如图③,在△EBC中,∠E=∠ECB=60°,EC=BC=3,点O在BC上,且OC=2,动点P从点E沿射线EC以每秒1个单位长度的速度运动,连接OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点 F恰好落在射线EB上,求点P运动的时间t.


-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
组别
分数段
频数(人)
频率
1
50≤x<60
30
0.1
2
60≤x<70
45
0.15
3
70≤x<80
60
n
4
80≤x<90
m
0.4
5
90≤x<100
45
0.15
请根据以图表信息,解答下列问题:

(1)表中m= , n=;
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.
相关试题