【题目】一家食品公司的市场调查员将本公司生产的一种新点心免费送给50人品尝,以调查这种点心的甜度是否适中.根据调查结果绘制了如下尙不完整的统计图;
![]()
(1)求本次调查中,认为“甜度太甜”的人数占被调查总人数的百分比;
(2)求被调查的50人中,认为“甜度太淡”的人数;
(3)完成条形图;
(4)求扇形图中,“甜度太淡”对应扇形的圆心角度数.
参考答案:
【答案】(1)本次调查中,认为“甜度太甜”的人数占被调查总人数的百分比为20%;(2)被调查的50人中,认为“甜度太淡”的人数为15人;(3)补全图形见解析;(4) “甜度太淡”对应扇形的圆心角度数为108°.
【解析】
(1)用“适中”人数除以其圆心角度数占周角度数比例可得总人数,再用“太甜”的人数除以总人数即可得;
(2)总人数减去其它两种甜度的人数即可求得“太淡”的人数即可得;
(3)根据以上所求结果即可补全图形;
(4)用360°乘以“太淡”的人数占总人数比例可得.
(1)∵本次调查的总人数为25÷
=50人,
∴本次调查中,认为“甜度太甜”的人数占被调查总人数的百分比为
×100%=20%;
(2)被调查的50人中,认为“甜度太淡”的人数为50﹣(25+10)=15人;
(3)补全图形如下:
![]()
(4)扇形图中,“甜度太淡”对应扇形的圆心角度数为360°×
=108°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有甲、乙两个容器,分别装有进水管和出水管,两容器的进、出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进、出水管.打开和关闭水管的时间忽略不计.容器中的水量y(升)与乙容器注水时间x(分)之间的关系如图所示.
(1)求甲容器的进、出水速度;
(2)甲容器的进、出水管都关闭后,是否存在两容器的水量相等?若存在,求出此时的时间.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B在点A正南的方向上,与点A的距离为lcm;点C在点A北偏东30°的方向上,与点A的距离为2cm;点D在点A正西的方向上,与点A的距离为3cm.以点A为原点,正北方向为y轴,建立平面直角坐标系,规定一个单位长度代表1cm长.
(1)画出点C、D;
(2)写出点B、D的坐标,将点B作怎样的平移可得到点D?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,连结AF,CE.求证:四边形AECF是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】市政府要求武汉轻轨二七路段工程12个月完工。现由甲、乙两工程队参与施工,已知甲队单独完成需要16个月,每月需费用600万元;乙队单独完成需要24个月,每月需费用400万元。由于前期工程路面较宽,可由甲、乙两队共同施工。随着工程的进行,路面变窄,两队再同时施工,对交通影响较大,为了减小对解放大道的交通秩序的影响,后期只能由一个工程队施工.工程总指挥部结合实际情况现拟定两套工程方案:
①先由甲、乙两个工程队合做m个月后,再由甲队单独施工,保证恰好按时完成.
②先由甲、乙两个工程队合做n个月后,再由乙队单独施工,也保证恰好按时完成.
⑴求两套方案中m和n的值;
⑵通过计算,并结合施工费用及施工对交通的影响,你认为该工程总指挥部应该选择哪种方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(
,1)在反比例函数y=
的图象上.
(1)求反比例函数y=
的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP=
S△AOB , 求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.

(1)求证:OE=OF;
(2)如图(2),若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其他条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
相关试题