【题目】如图1,点
为直线
上一点,过点
作射线
,使
,将一把直角三角尺的直角顶点放在点
处,一边
在射线
上,另一边
在直线
的下方,其中
.
![]()
(1)将图1中的三角尺绕点
顺时针旋转至图2,使一边
在
的内部,且恰好平分
,求
的度数;
(2)将图1中三角尺绕点
按每秒10的速度沿顺时针方向旋转一周,旋转过程中,在第 秒时,边
恰好与射线
平行;在第 秒时,直线
恰好平分锐角
.
(3)将图1中的三角尺绕点
顺时针旋转至图3,使
在
的内部,请探究
与
之间的数量关系,并说明理由.
参考答案:
【答案】(1) 150°;(2) 9或27;6或24 ;(3)见解析.
【解析】
(1)根据角平分线的定义求出∠COM,然后根据∠CON=∠COM+90°解答;(2)分别分两种情况根据平行线的性质和旋转的性质求出旋转角,然后除以旋转速度即可得解;
(3)用∠BOM和∠NOC表示出∠BON,然后列出方程整理即可得解.
解:(1)∵OM平分∠AOC,
∴∠COM=
∠AOC=60°,
∴∠CON=∠COM+90°=150°;
(2))∵∠AOC=120°,
∴∠BOC=60°,
∵∠OMN=30°,
∴当ON在直线AB上时,MN∥OC,
旋转角为90°或270°,
∵每秒顺时针旋转10°,
∴时间为9或27,
直线ON恰好平分锐角∠BOC时,
旋转角为60°或 180°+60°=240°,
∵每秒顺时针旋转10°,
∴时间为6或24;
故答案为:9或27;6或24.
(3)∵∠MON=90°,∠BOC=60°,
∴∠BON=90°-∠BOM,
∠BON=60°-∠NOC,
∴90°-∠BOM=60°-∠NOC,
∴∠BOM-∠NOC=30°,
故∠BOM与∠NOC之间的数量关系为:∠BOM-∠NOC=30°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(问题)如图①,点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C互补,则线段AD与CD有什么数量关系?
(探究)
探究一:如图②,若∠A=90°,则∠C=180°﹣∠A=90°,即AD⊥AB,CD⊥BC,又因为BD平分∠ABC,所以AD=CD,理由是: .
探究二:若∠A≠90°,请借助图①,探究AD与CD的数量关系并说明理由.
[理论]点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C互补,则线段AD与CD的数量关系是 .
[拓展]已知:如图③,在△ABC中,AB=AC,∠A=100°,BD平分∠ABC.
求证:BC=AD+BD

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形
沿
折叠后点
与
重合.若原矩形的长宽之比为
,则
的值为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
,点
在
上,点
、点
在
上,
的角平分线
交
于点
,过点
作
于点
,己知
,则
的度数为( )
A. 26°B. 32°C. 36°D. 42°
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列结论中,错误结论有( );①三角形三条高(或高的延长线)的交点不在三角形的内部,就在三角形的外部;②一个多边形的边数每增加一条,这个多边形的内角和就增加360;③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行;④三角形的一个外角等于任意两个内角的和;⑤在
中,若
,则
为直角三角形;⑥顺次延长三角形的三边,所得的三角形三个外角中锐角最多有一个A. 6个B. 5个C. 4个D. 3个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中有
三点。(1)连接
,若
①线段的长为 (直接写出结果)
②如图1,点
为
轴负半轴上一点,点
为线段
上一点,连接
作
,且
,当点
从
向
运动时,
点不变,
点随之运动,连接
,求线段
的中点
的运动路径长;(2)如图2,作
,连接
并延长,交
延长线于
于
.若
,且
,在平面内是否存在点
,使以
为顶点的四边形是平行四边形,若存在,请求出点
的坐标;若不存在,请说明理由.
相关试题